Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38942187

ABSTRACT

Applied to the epicardium in-vivo, regenerative cardiac patches support the ventricular wall, reduce wall stresses, encourage ventricular wall thickening, and improve ventricular function. Scaffold engraftment, however, remains a challenge. After implantation, scaffolds are subject to the complex, time-varying, biomechanical environment of the myocardium. The mechanical capacity of engineered tissue to biomimetically deform and simultaneously support the damaged native tissue is crucial for its efficacy. To date, however, the biomechanical response of engineered tissue applied directly to live myocardium has not been characterized. In this paper, we utilize optical imaging of a Langendorff ex-vivo cardiac model to characterize the native deformation of the epicardium as well as that of attached engineered scaffolds. We utilize digital image correlation, linear strain, and 2D principal strain analysis to assess the mechanical compliance of acellular ice templated collagen scaffolds. Scaffolds had either aligned or isotropic porous architecture and were adhered directly to the live epicardial surface with either sutures or cyanoacrylate glue. We demonstrate that the biomechanical characteristics of native myocardial deformation on the epicardial surface can be reproduced by an ex-vivo cardiac model. Furthermore, we identified that scaffolds with unidirectionally aligned pores adhered with suture fixation most accurately recapitulated the deformation of the native epicardium. Our study contributes a translational characterization methodology to assess the physio-mechanical performance of engineered cardiac tissue and adds to the growing body of evidence showing that anisotropic scaffold architecture improves the functional biomimetic capacity of engineered cardiac tissue. STATEMENT OF SIGNIFICANCE: Engineered cardiac tissue offers potential for myocardial repair, but engraftment remains a challenge. In-vivo, engineered scaffolds are subject to complex biomechanical stresses and the mechanical capacity of scaffolds to biomimetically deform is critical. To date, the biomechanical response of engineered scaffolds applied to live myocardium has not been characterized. In this paper, we utilize optical imaging of an ex-vivo cardiac model to characterize the deformation of the native epicardium and scaffolds attached directly to the heart. Comparing scaffold architecture and fixation method, we demonstrate that sutured scaffolds with anisotropic pores aligned with the native alignment of the superficial myocardium best recapitulate native deformation. Our study contributes a physio-mechanical characterization methodology for cardiac tissue engineering scaffolds.

2.
Biomater Adv ; 155: 213680, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944449

ABSTRACT

Regenerative cardiac tissue is a promising field of study with translational potential as a therapeutic option for myocardial repair after injury, however, poor electrical and contractile function has limited translational utility. Emerging research suggests scaffolds that recapitulate the structure of the native myocardium improve physiological function. Engineered cardiac constructs with anisotropic extracellular architecture demonstrate improved tissue contractility, signaling synchronicity, and cellular organization when compared to constructs with reduced architectural order. The complexity of scaffold fabrication, however, limits isolated variation of individual structural and mechanical characteristics. Thus, the isolated impact of scaffold macroarchitecture on tissue function is poorly understood. Here, we produce isotropic and aligned collagen scaffolds seeded with embryonic stem cell derived cardiomyocytes (hESC-CM) while conserving all confounding physio-mechanical features to independently assess the effects of macroarchitecture on tissue function. We quantified spatiotemporal tissue function through calcium signaling and contractile strain. We further examined intercellular organization and intracellular development. Aligned tissue constructs facilitated improved signaling synchronicity and directional contractility as well as dictated uniform cellular alignment. Cells on aligned constructs also displayed phenotypic and genetic markers of increased maturity. Our results isolate the influence of scaffold macrostructure on tissue function and inform the design of optimized cardiac tissue for regenerative and model medical systems.


Subject(s)
Myocytes, Cardiac , Tissue Engineering , Tissue Engineering/methods , Anisotropy , Myocardium , Cell Differentiation
3.
Acta Biomater ; 153: 260-272, 2022 11.
Article in English | MEDLINE | ID: mdl-36155096

ABSTRACT

The architectural and physiomechanical properties of regenerative scaffolds have been shown to improve engineered tissue function at both a cellular and tissue level. The fabrication of regenerative three-dimensional scaffolds that precisely replicate the complex hierarchical structure of native tissue, however, remains a challenge. The aim of this work is therefore two-fold: i) demonstrate an innovative multidirectional freeze-casting system to afford precise architectural control of ice-templated collagen scaffolds; and ii) present a predictive simulation as an experimental design tool for bespoke scaffold architecture. We used embedded heat sources within the freeze-casting mold to manipulate the local thermal environment during solidification of ice-templated collagen scaffolds. The resultant scaffolds comprised complex and spatially varied lamellar orientations that correlated with the imposed thermal environment and could be readily controlled by varying the geometry and power of the heat sources. The complex macro-architecture did not interrupt the hierarchical features characteristic of ice-templated scaffolds, but pore orientation had a significant impact on the stiffness of resultant structures under compression. Furthermore, our finite element model (FEM) accurately predicted the thermal environment and illustrated the freezing front topography within the mold during solidification. The lamellar orientation of freeze-cast scaffolds was also predicted using thermal gradient vector direction immediately prior to phase change. In combination our FEM and bespoke freeze-casting system present an exciting opportunity for tailored architectural design of ice-templated regenerative scaffolds that mimic the complex hierarchical environment of the native extracellular matrix. STATEMENT OF SIGNIFICANCE: Biomimetic scaffold structure improves engineered tissue function, but the fabrication of three-dimensional scaffolds that precisely replicate the complex hierarchical structure of native tissue remains a challenge. Here, we leverage the robust relationship between thermal gradients and lamellar orientation of ice-templated collagen scaffolds to develop a multidirectional freeze-casting system with precise control of the thermal environment and consequently the complex lamellar structure of resultant scaffolds. Demonstrating the diversity of our approach, we identify heat source geometry and power as control parameters for complex lamellar orientations. We simultaneously present a finite element model (FEM) that describes the three-dimensional thermal environment during solidification and accurately predicts lamellar structure of resultant scaffolds. The model serves as a design tool for bespoke regenerative scaffolds.


Subject(s)
Ice , Tissue Scaffolds , Tissue Scaffolds/chemistry , Collagen/chemistry , Tissue Engineering/methods , Freezing , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...