Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 30(5): 055303, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29315081

ABSTRACT

We provide a theoretical description of the optical orientation of a single Mn2+ ion spin under quasi-resonant excitation demonstrated experimentally by Goryca et al (2009 Phys. Rev. Lett. 103 087401). We build and analyze a hierarchy of models by starting with the simplest assumptions (transfer of perfectly spin-polarized excitons from Mn-free dot to the other dot containing a single Mn2+ spin, followed by radiative recombination) and subsequently adding more features, such as spin relaxation of electrons and holes. Particular attention is paid to the role of the influx of the dark excitons and the process of biexciton formation, which are shown to contribute significantly to the orientation process in the quasi-resonant excitation case. Analyzed scenarios show how multiple features of the excitonic complexes in magnetically-doped quantum dots, such as the values of exchange integrals, spin relaxation times, etc, lead to a plethora of optical orientation processes, characterized by distinct dependencies on light polarization and laser intensity, and occurring on distinct timescales. Comparison with experimental data shows that the correct description of the optical orientation mechanism requires taking into account Mn2+ spin-flip processes occurring not only when the exciton is already in the orbital ground state of the light-emitting dot, but also those that happen during the exciton transfer from high-energy states to the ground state. Inspired by the experimental results on energy relaxation of electrons and holes in nonmagnetic dots, we focus on the process of biexciton creation allowed by mutual spin-flip of an electron and the Mn2+ spin, and we show that by including it in the model, we obtain good qualitative and quantitative agreement with the experimental data on quasi-resonantly driven Mn2+ spin orientation.

2.
J Phys Condens Matter ; 29(33): 333001, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28569239

ABSTRACT

A qubit subjected to pure dephasing due to classical Gaussian noise can be turned into a spectrometer of this noise by utilizing its readout under properly chosen dynamical decoupling (DD) sequences to reconstruct the power spectral density of the noise. We review the theory behind this DD-based noise spectroscopy technique, paying special attention to issues that arise when the environmental noise is non-Gaussian and/or it has truly quantum properties. While we focus on the theoretical basis of the method, we connect the discussed concepts with specific experiments, and provide an overview of environmental noise models relevant for solid-state based qubits, including quantum-dot based spin qubits, superconducting qubits, and NV centers in diamond.

3.
Phys Rev Lett ; 108(8): 086802, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463554

ABSTRACT

We investigate the scaling of coherence time T(2) with the number of π pulses n(π) in a singlet-triplet spin qubit using Carr-Purcell-Meiboom-Gill (CPMG) and concatenated dynamical decoupling (CDD) pulse sequences. For an even numbers of CPMG pulses, we find a power law T(2) is proportional to (n(π))(γ(e)), with γ(e)=0.72±0.01, essentially independent of the envelope function used to extract T(2). From this surprisingly robust value, a power-law model of the noise spectrum of the environment, S(ω)~ω(-ß), yields ß=γ(e)/(1-γ(e))=2.6±0.1. Model values for T(2)(n(π)) using ß=2.6 for CPMG with both even and odd n(π) up to 32 and CDD orders 3 through 6 compare very well with the experiment.

4.
Nature ; 447(7144): 573-6, 2007 May 31.
Article in English | MEDLINE | ID: mdl-17538616

ABSTRACT

Research in semiconductor spintronics aims to extend the scope of conventional electronics by using the spin degree of freedom of an electron in addition to its charge. Significant scientific advances in this area have been reported, such as the development of diluted ferromagnetic semiconductors, spin injection into semiconductors from ferromagnetic metals and discoveries of new physical phenomena involving electron spin. Yet no viable means of developing spintronics in semiconductors has been presented. Here we report a theoretical design that is a conceptual step forward-spin accumulation is used as the basis of a semiconductor computer circuit. Although the giant magnetoresistance effect in metals has already been commercially exploited, it does not extend to semiconductor/ferromagnet systems, because the effect is too weak for logic operations. We overcome this obstacle by using spin accumulation rather than spin flow. The basic element in our design is a logic gate that consists of a semiconductor structure with multiple magnetic contacts; this serves to perform fast and reprogrammable logic operations in a noisy, room-temperature environment. We then introduce a method to interconnect a large number of these gates to form a 'spin computer'. As the shrinking of conventional complementary metal-oxide-semiconductor (CMOS) transistors reaches its intrinsic limit, greater computational capability will mean an increase in both circuit area and power dissipation. Our spin-based approach may provide wide margins for further scaling and also greater computational capability per gate.

5.
Phys Rev Lett ; 95(16): 167401, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16241841

ABSTRACT

Time-resolved magneto-optical Kerr spectroscopy of ferromagnetic InMnAs reveals two distinct demagnetization processes--fast (<1 ps) and slow (approximately 100 ps). Both components diminish with increasing temperature and are absent above the Curie temperature. The fast component rapidly grows with pump power and saturates at high fluences (>10 mJ/cm(2)); the saturation value indicates a complete quenching of ferromagnetism on a subpicosecond time scale. We attribute this fast dynamics to spin heating through p-d exchange interaction between photocarriers and Mn ions, while the approximately 100 ps component is interpreted as spin-lattice relaxation.

SELECTION OF CITATIONS
SEARCH DETAIL
...