Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Bioprint ; 9(1): 621, 2023.
Article in English | MEDLINE | ID: mdl-36844246

ABSTRACT

1The necessity to preserve meniscal function prompts the research and development of novel treatment options, like three-dimensional (3D) bioprinting. However, bioinks for meniscal 3D bioprinting have not been extensively explored. Therefore, in this study, a bioink composed of alginate, gelatin, and carboxymethylated cellulose nanocrystal (CCNC) was formulated and evaluated. Firstly, bioinks with varying concentrations of the aforementioned components were subjected to rheological analysis (amplitude sweep test, temperature sweep test, and rotation). The optimal bioink formulation of 4.0% gelatin, 0.75% alginate, and 1.4% CCNC dissolved in 4.6% D-mannitol was further used for printing accuracy analysis, followed by 3D bioprinting with normal human knee articular chondrocytes (NHAC-kn). The encapsulated cells' viability was > 98%, and collagen II expression was stimulated by the bioink. The formulated bioink is printable, stable under cell culture conditions, biocompatible, and able to maintain the native phenotype of chondrocytes. Aside from meniscal tissue bioprinting, it is believed that this bioink could serve as a basis for the development of bioinks for various tissues.

2.
Sci Rep ; 13(1): 646, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635477

ABSTRACT

Articular cartilage and meniscus injuries are prevalent disorders with insufficient regeneration responses offered by available treatment methods. In this regard, 3D bioprinting has emerged as one of the most promising new technologies, offering novel treatment options. Additionally, the latest achievements from the fields of biomaterials and tissue engineering research identified constituents facilitating the creation of biocompatible scaffolds. In this study, we looked closer at hyaluronic acid and multi-walled carbon nanotubes as bioink additives. Firstly, we assessed the minimal concentrations that stimulate cell viability, and decrease reactive oxygen species and apoptosis levels in 2D cell cultures of normal human knee articular chondrocytes (NHAC) and human adipose-derived mesenchymal stem cells (hMSC-AT). In this regard, 0.25 mg/ml of hyaluronic acid and 0.0625 mg/ml of carbon nanotubes were selected as the most optimal concentrations. In addition, we investigated the protective influence of 2-phospho-L-ascorbic acid in samples with carbon nanotubes. Tests conducted on 3D bioprinted constructs revealed that only a combination of components positively impacted cell viability throughout the whole experiment. Gene expression analysis of COL1A1, COL6A1, HIF1A, COMP, RUNX2, and POU5F1 showed significant changes in the expression of all analyzed genes with a progressive overall loss of transcriptional activity in most of them.


Subject(s)
Bioprinting , Cartilage, Articular , Nanotubes, Carbon , Humans , Tissue Engineering/methods , Hyaluronic Acid/pharmacology , Tissue Scaffolds , Bioprinting/methods , Printing, Three-Dimensional
3.
Cells ; 10(6)2021 06 18.
Article in English | MEDLINE | ID: mdl-34207441

ABSTRACT

Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (ß and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Pancreas/cytology , Stem Cells/cytology , Animals , Bionics/methods , Cell Differentiation/physiology , Humans , Insulin-Secreting Cells/cytology
4.
Micromachines (Basel) ; 12(3)2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33799490

ABSTRACT

BACKGROUND: 3D bioprinting is the future of constructing functional organs. Creating a bioactive scaffold with pancreatic islets presents many challenges. The aim of this paper is to assess how the 3D bioprinting process affects islet viability. METHODS: The BioX 3D printer (Cellink), 600 µm inner diameter nozzles, and 3% (w/v) alginate cell carrier solution were used with rat, porcine, and human pancreatic islets. Islets were divided into a control group (culture medium) and 6 experimental groups (each subjected to specific pressure between 15 and 100 kPa). FDA/PI staining was performed to assess the viability of islets. Analogous studies were carried out on α-cells, ß-cells, fibroblasts, and endothelial cells. RESULTS: Viability of human pancreatic islets was as follows: 92% for alginate-based control and 94%, 90%, 74%, 48%, 61%, and 59% for 15, 25, 30, 50, 75, and 100 kPa, respectively. Statistically significant differences were observed between control and 50, 75, and 100 kPa, respectively. Similar observations were made for porcine and rat islets. CONCLUSIONS: Optimal pressure during 3D bioprinting with pancreatic islets by the extrusion method should be lower than 30 kPa while using 3% (w/v) alginate as a carrier.

5.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629779

ABSTRACT

The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.

6.
Transplant Proc ; 52(7): 2043-2049, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32527472

ABSTRACT

INTRODUCTION: The extracellular matrix (ECM) consists, among others, of polysaccharides, glycosaminoglycans, and proteins. It is being increasingly used in tissue bioengineering. Obtaining ECM of the highest quality through decellularization is a big challenge because of some differences in organ structure. To deprive organs of the cellular part, chemical, enzymatic, or mechanical methods are used. After decellularization, we get a scaffold made of a variety of proteins, and it is the role of these proteins that can significantly affect the maintenance of the spatial structure and be a suitable environment for cells to rebuild a specific organ. AIM: Estimation of the detergent (Triton X-100) flow parameters and anthropometric donors' decellularization process accuracy on the final ECM composition. MATERIALS: Five human pancreata, rejected from transplantation, were used for decellularization. All organs were harvested from brain-dead donors age 13 to 60 years. METHODS: Decellularization was carried out using the flow method with Triton X-100 as an active agent. The experiment compared 5 different flow values. After decellularization, an assessment of the final DNA concentration and the protein composition was performed. Results were compared to anthropometric data of donors. In addition, a microscopic analysis was also carried out. RESULTS: The best results were obtained using a flow of 120 mL/minute. A higher detergent flow was associated with a lower concentration of residual DNA in scaffold. Analysis of the protein profile with anthropometric data has shown that LAM A2 was increasing with age and LAMA5 was decreasing. Being overweight was associated with a higher proportion of COL1 and 4 and a smaller proportion of COL6.


Subject(s)
Detergents , Extracellular Matrix , Octoxynol , Pancreas , Tissue Engineering/methods , Adolescent , Adult , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Female , Glycosaminoglycans , Humans , Male , Middle Aged , Pancreas/chemistry , Pancreas/drug effects , Perfusion , Tissue Donors , Tissue Scaffolds/chemistry , Young Adult
7.
Arch Immunol Ther Exp (Warsz) ; 68(2): 13, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32297019

ABSTRACT

Interactions between the immune system and the pancreas are pivotal in understanding how and why ß cells' damage causes problems with pancreas functioning. Pancreatic islets are crucial in maintaining glucose homeostasis in organs, tissue and cells. Autoimmune aggression towards pancreatic islets, mainly ß cells, leads to type 1 diabetes-one of the most prevalent autoimmune disease in the world, being a worldwide risk to health of many people. In this review, we highlight the role of immune cells and its influence in the development of autoimmunity in Langerhans islets. Moreover, we discuss the impact of the immunological factors on future understanding possible recurrence of autoimmunity on 3D-bioprinted bionic pancreas.


Subject(s)
Bioprinting/trends , Diabetes Mellitus, Type 1/therapy , Immune System/cytology , Pancreas/immunology , Stem Cells/cytology , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Humans , Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Islets of Langerhans/immunology , Islets of Langerhans Transplantation , Pancreas/pathology
8.
Nucleic Acids Res ; 48(5): 2531-2543, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31965181

ABSTRACT

Expansion of an unstable CTG repeat in the 3'UTR of the DMPK gene causes Myotonic Dystrophy type 1 (DM1). CUG-expanded DMPK transcripts (CUGexp) sequester Muscleblind-like (MBNL) alternative splicing regulators in ribonuclear inclusions (foci), leading to abnormalities in RNA processing and splicing. To alleviate the burden of CUGexp, we tested therapeutic approach utilizing antisense oligonucleotides (AONs)-mediated DMPK splice-switching and degradation of mutated pre-mRNA. Experimental design involved: (i) skipping of selected constitutive exons to induce frameshifting and decay of toxic mRNAs by an RNA surveillance mechanism, and (ii) exclusion of the alternative exon 15 (e15) carrying CUGexp from DMPK mRNA. While first strategy failed to stimulate DMPK mRNA decay, exclusion of e15 enhanced DMPK nuclear export but triggered accumulation of potentially harmful spliced out pre-mRNA fragment containing CUGexp. Neutralization of this fragment with antisense gapmers complementary to intronic sequences preceding e15 failed to diminish DM1-specific spliceopathy due to AONs' chemistry-related toxicity. However, intronic gapmers alone reduced the level of DMPK mRNA and mitigated DM1-related cellular phenotypes including spliceopathy and nuclear foci. Thus, a combination of the correct chemistry and experimental approach should be carefully considered to design a safe AON-based therapeutic strategy for DM1.


Subject(s)
Alternative Splicing/genetics , Myotonic Dystrophy/genetics , Myotonic Dystrophy/therapy , Myotonin-Protein Kinase/genetics , Oligonucleotides, Antisense/therapeutic use , RNA Precursors/genetics , RNA Stability/genetics , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Exons/genetics , Humans , Myotonin-Protein Kinase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion/genetics
9.
Analyst ; 144(2): 622-633, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30462105

ABSTRACT

Antisense oligonucleotides (ASOs) are synthetic bioactive compounds used as therapeutic agents in clinical trials. They act by binding to complementary sequences of the targeted nucleic acids in cells. Assessing the efficiency of ASO delivery to cells or tissues and the stability of these compounds in different biological systems is important. To answer these questions, we developed a new, quick and reliable method to determine the concentrations of different types of ASOs in treated cells. Ultra-high performance liquid chromatography coupled with mass spectrometry was used for the first time for the separation and determination of the studied compounds in total RNA extracts. To develop a method with the highest possible sensitivity, a central composite design was used to comprehensively optimize the MS parameters. Moreover, the effects of the type and concentration of the ion pair reagent on sensitivity were also examined. Finally, a mobile phase containing methanol, hexafluoroisopropanol and N,N-dimethylbutylamine was selected. The optimized method allowed good linearity, accuracy, precision and sensitivity of ASO detection. Next, these compounds were delivered into cells via transfection at a concentration of 25 nM or 125 nM in 1 mL of cell culture medium. After 48 hours, total RNA was isolated from the treated cells and analyzed with the use of the newly developed method. For the cells treated with a higher concentration of ASO composed of phosphorothioate 2'-O-methyl RNA units, the concentration in solution was 0.96 ± 0.06 µM, while in the case of shorter ASO composed of locked nucleic acid units, it was 0.72 ± 0.06 µM in the total RNA extract.


Subject(s)
Mass Spectrometry/methods , Oligonucleotides, Antisense/metabolism , Animals , Cell Line , Cell Survival , Humans
10.
Life Sci Alliance ; 1(5): e201800157, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30456384

ABSTRACT

The extent of and the oncogenic role played by alternative splicing (AS) in cancer are well documented. Nonetheless, only few studies have attempted to dissect individual gene function at an isoform level. Here, we focus on the AS of splicing factors during prostate cancer progression, as these factors are known to undergo extensive AS and have the potential to affect hundreds of downstream genes. We identified exon 7 (ex7) in the MBNL1 (Muscleblind-like 1) transcript as being the most differentially included exon in cancer, both in cell lines and in patients' samples. In contrast, MBNL1 overall expression was down-regulated, consistently with its described role as a tumor suppressor. This observation holds true in the majority of cancer types analyzed. We first identified components associated to the U2 splicing complex (SF3B1, SF3A1, and PHF5A) as required for efficient ex7 inclusion and we confirmed that this exon is fundamental for MBNL1 protein homodimerization. We next used splice-switching antisense oligonucleotides (AONs) or siRNAs to compare the effect of MBNL1 splicing isoform switching with knockdown. We report that whereas the absence of MBNL1 is tolerated in cancer cells, the expression of isoforms lacking ex7 (MBNL1 Δex7) induces DNA damage and inhibits cell viability and migration, acting as dominant negative proteins. Our data demonstrate the importance of studying gene function at the level of alternative spliced isoforms and support our conclusion that MBNL1 Δex7 proteins are antisurvival factors with a defined tumor suppressive role that cancer cells tend to down-regulate in favor of MBNL +ex7 isoforms.

11.
Nucleic Acids Res ; 46(17): 9119-9133, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29955876

ABSTRACT

Muscleblind-like (MBNL) proteins are conserved RNA-binding factors involved in alternative splicing (AS) regulation during development. While AS is controlled by distribution of MBNL paralogs and isoforms, the affinity of these proteins for specific RNA-binding regions and their location within transcripts, it is currently unclear how RNA structure impacts MBNL-mediated AS regulation. Here, we defined the RNA structural determinants affecting MBNL-dependent AS activity using both cellular and biochemical assays. While enhanced inclusion of MBNL-regulated alternative exons is controlled by the arrangement and number of MBNL binding sites within unstructured RNA, when these sites are embedded in a RNA hairpin MBNL binds preferentially to one side of stem region. Surprisingly, binding of MBNL proteins to RNA targets did not entirely correlate with AS efficiency. Moreover, comparison of MBNL proteins revealed structure-dependent competitive behavior between the paralogs. Our results showed that the structure of targeted RNAs is a prevalent component of the mechanism of alternative splicing regulation by MBNLs.


Subject(s)
Alternative Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/physiology , Animals , Base Sequence , Binding Sites/genetics , COS Cells , Cells, Cultured , Chlorocebus aethiops , HeLa Cells , Humans , Mice , Protein Binding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/chemistry
12.
Sci Rep ; 7(1): 17587, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29242583

ABSTRACT

Alternative splicing is a complex process that provides a high diversity of proteins from a limited number of protein-coding genes. It is governed by multiple regulatory factors, including RNA-binding proteins (RBPs), that bind to specific RNA sequences embedded in a specific structure. The ability to predict RNA-binding regions recognized by RBPs using whole-transcriptome approaches can deliver a multitude of data, including false-positive hits. Therefore, validation of the global results is indispensable. Here, we report the development of an efficient and rapid approach based on a modular hybrid minigene combined with antisense oligonucleotides to enable verification of functional RBP-binding sites within intronic and exonic sequences of regulated pre-mRNA. This approach also provides valuable information regarding the regulatory properties of pre-mRNA, including the RNA secondary structure context. We also show that the developed approach can be used to effectively identify or better characterize the inhibitory properties of potential therapeutic agents for myotonic dystrophy, which is caused by sequestration of specific RBPs, known as muscleblind-like proteins, by mutated RNA with expanded CUG repeats.


Subject(s)
Alternative Splicing , Oligonucleotides, Antisense/genetics , RNA-Binding Proteins/metabolism , RNA/genetics , RNA/metabolism , Animals , Base Sequence , Exons/genetics , Gene Expression Profiling , HeLa Cells , Humans , Introns/genetics , Mice , Protein Binding
13.
Nucleic Acids Res ; 44(21): 10326-10342, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27733504

ABSTRACT

Muscleblind-like (MBNL) proteins are critical RNA processing factors in development. MBNL activity is disrupted in the neuromuscular disease myotonic dystrophy type 1 (DM1), due to the instability of a non-coding microsatellite in the DMPK gene and the expression of CUG expansion (CUGexp) RNAs. Pathogenic interactions between MBNL and CUGexp RNA lead to the formation of nuclear complexes termed foci and prevent MBNL function in pre-mRNA processing. The existence of multiple MBNL genes, as well as multiple protein isoforms, raises the question of whether different MBNL proteins possess unique or redundant functions. To address this question, we coexpressed three MBNL paralogs in cells at equivalent levels and characterized both specific and redundant roles of these proteins in alternative splicing and RNA foci dynamics. When coexpressed in the same cells, MBNL1, MBNL2 and MBNL3 bind the same RNA motifs with different affinities. While MBNL1 demonstrated the highest splicing activity, MBNL3 showed the lowest. When forming RNA foci, MBNL1 is the most mobile paralog, while MBNL3 is rather static and the most densely packed on CUGexp RNA. Therefore, our results demonstrate that MBNL paralogs and gene-specific isoforms possess inherent functional differences, an outcome that could be enlisted to improve therapeutic strategies for DM1.


Subject(s)
RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , Binding Sites , Cell Line , Exons , Humans , Nucleotide Motifs , Position-Specific Scoring Matrices , Protein Binding , Protein Transport , RNA/chemistry , RNA/metabolism , RNA Isoforms , RNA-Binding Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...