Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37448032

ABSTRACT

The Internet of Things (IoT) is transforming almost every industry, including agriculture, food processing, health care, oil and gas, environmental protection, transportation and logistics, manufacturing, home automation, and safety. Cost-effective, small-sized batteries are often used to power IoT devices being deployed with limited energy capacity. The limited energy capacity of IoT devices makes them vulnerable to battery depletion attacks designed to exhaust the energy stored in the battery rapidly and eventually shut down the device. In designing and deploying IoT devices, the battery and device specifications should be chosen in such a way as to ensure a long lifetime of the device. This paper proposes diffusion approximation as a mathematical framework for modelling the energy depletion process in IoT batteries. We applied diffusion or Brownian motion processes to model the energy depletion of a battery of an IoT device. We used this model to obtain the probability density function, mean, variance, and probability of the lifetime of an IoT device. Furthermore, we studied the influence of active power consumption, sleep time, and battery capacity on the probability density function, mean, and probability of the lifetime of an IoT device. We modelled ghost energy depletion attacks and their impact on the lifetime of IoT devices. We used numerical examples to study the influence of battery depletion attacks on the distribution of the lifetime of an IoT device. We also introduced an energy threshold after which the device's battery should be replaced in order to ensure that the battery is not completely drained before it is replaced.


Subject(s)
Internet of Things , Physical Phenomena , Diffusion , Agriculture , Likelihood Functions
2.
Sensors (Basel) ; 21(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34372279

ABSTRACT

The increasing use of Software-Defined Networks brings the need for their performance analysis and detailed analytical and numerical models of them. The primary element of such research is a model of a SDN switch. This model should take into account non-Poisson traffic and general distributions of service times. Because of frequent changes in SDN flows, it should also analyze transient states of the queues. The method of diffusion approximation can meet these requirements. We present here a diffusion approximation of priority queues and apply it to build a more detailed model of SDN switch where packets returned by the central controller have higher priority than other packets.

3.
Sensors (Basel) ; 21(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200090

ABSTRACT

The transmission of massive amounts of small packets generated by access networks through high-speed Internet core networks to other access networks or cloud computing data centres has introduced several challenges such as poor throughput, underutilisation of network resources, and higher energy consumption. Therefore, it is essential to develop strategies to deal with these challenges. One of them is to aggregate smaller packets into a larger payload packet, and these groups of aggregated packets will share the same header, hence increasing throughput, improved resource utilisation, and reduction in energy consumption. This paper presents a review of packet aggregation applications in access networks (e.g., IoT and 4G/5G mobile networks), optical core networks, and cloud computing data centre networks. Then we propose new analytical models based on diffusion approximation for the evaluation of the performance of packet aggregation mechanisms. We demonstrate the use of measured traffic from real networks to evaluate the performance of packet aggregation mechanisms analytically. The use of diffusion approximation allows us to consider time-dependent queueing models with general interarrival and service time distributions. Therefore these models are more general than others presented till now.


Subject(s)
Cloud Computing
4.
Entropy (Basel) ; 23(5)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065734

ABSTRACT

In this article, a way to employ the diffusion approximation to model interplay between TCP and UDP flows is presented. In order to control traffic congestion, an environment of IP routers applying AQM (Active Queue Management) algorithms has been introduced. Furthermore, the impact of the fractional controller PIγ and its parameters on the transport protocols is investigated. The controller has been elaborated in accordance with the control theory. The TCP and UDP flows are transmitted simultaneously and are mutually independent. Only the TCP is controlled by the AQM algorithm. Our diffusion model allows a single TCP or UDP flow to start or end at any time, which distinguishes it from those previously described in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...