Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Macromolecules ; 55(22): 10188-10196, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36438596

ABSTRACT

Recently, we reported time-resolved synchrotron small-angle X-ray scattering (TR-SAXS) studies during aqueous emulsion polymerization using a bespoke stirrable reaction cell (J. Am. Chem. Soc. 2021, 143, 1474-1484). This proof-of-concept study utilized a semifluorinated specialty monomer (2,2,2-trifluoroethyl methacrylate) to ensure high X-ray contrast relative to water. Herein, we extend this approach to emulsion polymerization of methyl methacrylate (MMA) in the presence or absence of sodium dodecyl sulfate (SDS) at 70 °C. Solution conductivity measurements for this anionic surfactant indicated a critical micelle concentration (CMC) of 10.9 mM at this temperature. Thus, SDS was employed at either 1.0 or 20.0 mM, which corresponds to well below or well above its CMC. Postmortem analysis by 1H NMR spectroscopy indicated MMA conversions of 93-95% for these three formulations. We demonstrate that the X-ray contrast between water and PMMA is sufficiently large to produce high-quality scattering patterns during TR-SAXS experiments. Such patterns were fitted using a hard-sphere scattering model to monitor the evolution in particle diameter. This enabled (i) determination of the time point for the onset of nucleation and (ii) the evolution in particle size to be monitored during the MMA polymerization. The final particle diameters obtained from such TR-SAXS studies were consistent with postmortem DLS analyses, while TEM studies confirmed that near-monodisperse latex particles were formed. Micellar nucleation occurs within just 2 min when the SDS concentration is well above its CMC, resulting in a high particle number concentration and relatively small latex particles. In contrast, when SDS is either absent or present below its CMC, particle nuclei are formed by homogeneous nucleation over significantly longer time scales (14-15 min). In the latter case, adsorption of SDS onto nascent particles reduces their coagulation, giving rise to a larger number of smaller particles compared to the surfactant-free polymerization. However, the characteristic time required for the onset of nucleation is barely affected because this is mainly controlled by the kinetics of homogeneous polymerization of the relatively water-soluble MMA monomer within the aqueous phase. These results suggest that the aqueous emulsion polymerization of several other (meth)acrylic monomers, and perhaps also vinyl acetate, may be amenable to TR-SAXS studies.

2.
Chem Sci ; 13(33): 9569-9579, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091885

ABSTRACT

A thermoresponsive amphiphilic diblock copolymer that can form spheres, worms or vesicles in aqueous media at neutral pH by simply raising the dispersion temperature from 1 °C (spheres) to 25 °C (worms) to 50 °C (vesicles) is prepared via polymerization-induced self-assembly (PISA). Heating such an aqueous copolymer dispersion from 1 °C up to 50 °C in the presence of 19 nm glycerol-functionalized silica nanoparticles enables this remarkable 'shape-shifting' behavior to be exploited as a new post-polymerization encapsulation strategy. The silica-loaded vesicles formed at 50 °C are then crosslinked using a disulfide-based dihydrazide reagent. Such covalent stabilization enables the dispersion to be cooled to room temperature without loss of the vesicle morphology, thus aiding characterization and enabling the loading efficiency to be determined as a function of both copolymer and silica concentration. Small-angle X-ray scattering (SAXS) analysis indicated a mean vesicle membrane thickness of approximately 20 ± 2 nm for the linear vesicles and TEM studies confirmed encapsulation of the silica nanoparticles within these nano-objects. After removal of the non-encapsulated silica nanoparticles via multiple centrifugation-redispersion cycles, thermogravimetric analysis indicated that vesicle loading efficiencies of up to 86% can be achieved under optimized conditions. Thermally-triggered release of the silica nanoparticles is achieved by cleaving the disulfide bonds at 50 °C using tris(2-carboxyethyl)phosphine (TCEP), followed by cooling to 20 °C to induce vesicle dissociation. SAXS is also used to confirm the release of silica nanoparticles by monitoring the disappearance of the structure factor peak arising from silica-silica interactions.

3.
J Am Chem Soc ; 143(3): 1474-1484, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33443414

ABSTRACT

The persulfate-initiated aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) is studied by time-resolved small-angle X-ray scattering (SAXS) at 60 °C using a stirrable reaction cell. TFEMA was preferred to styrene because it offers much greater X-ray scattering contrast relative to water, which is essential for sufficient temporal resolution. The evolution in particle size is monitored by both in situ SAXS and ex situ DLS in the absence or presence of an anionic surfactant (sodium dodecyl sulfate, SDS). Post-mortem SAXS studies confirmed the formation of well-defined spherical latexes, with volume-average diameters of 353 ± 9 nm and 68 ± 4 nm being obtained for the surfactant-free and SDS formulations, respectively. 1H NMR spectroscopy studies of the equivalent laboratory-scale formulations indicated TFEMA conversions of 99% within 80 min and 93% within 60 min for the surfactant-free and SDS formulations, respectively. Comparable polymerization kinetics are observed for the in situ SAXS experiments and the laboratory-scale syntheses, with nucleation occurring after approximately 6 min in each case. After nucleation, scattering patterns are fitted using a hard sphere scattering model to determine the evolution in particle growth for both formulations. Moreover, in situ SAXS enables identification of the three main intervals (I, II, and III) that are observed during aqueous emulsion polymerization in the presence of surfactant. These intervals are consistent with those indicated by solution conductivity and optical microscopy studies. Significant differences between the surfactant-free and SDS formulations are observed, providing useful insights into the mechanism of emulsion polymerization.

4.
J Forensic Sci ; 65(5): 1530-1538, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32569420

ABSTRACT

With increasing interest in employing iris biometrics as a forensic tool for identification by investigation authorities, there is a need for a thorough examination and understanding of postmortem decomposition processes that take place within the human eyeball, especially the iris. This can prove useful for fast and accurate matching of antemortem with postmortem data acquired at crime scenes or mass casualties, as well as for ensuring correct dispatching of bodies from the incident scene to a mortuary or funeral homes. Following these needs of forensic community, this paper offers an analysis of the coarse effects of eyeball decay done from a perspective of automatic iris recognition. We analyze postmortem iris images acquired for a subject with a very long postmortem observation time horizon (34 days), in both visible light and near-infrared light (860 nm), as the latter wavelength is used in commercial iris recognition systems. Conclusions and suggestions are provided that may aid forensic examiners in successfully utilizing iris patterns in postmortem identification of deceased subjects. Initial guidelines regarding the imaging process, types of illumination, and resolution are also given, together with expectations with respect to the iris features decomposition rates. Visible iris features possible for human, expert-based matching persists even up to 407 h postmortem, and near-infrared illumination is suggested for better mitigation of corneal opacity while imaging cadaver eyes (Post-mortem iris decomposition and its dynamics in morgue conditions. ArXiv pre-print, 2019).


Subject(s)
Iris/pathology , Postmortem Changes , Biometric Identification , Databases, Factual , Forensic Pathology/methods , Humans , Infrared Rays , Light , Time Factors
5.
Chem Sci ; 11(42): 11443-11454, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-34094387

ABSTRACT

Small-angle X-ray scattering (SAXS) is used to characterize the in situ formation of diblock copolymer spheres, worms and vesicles during reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate at 70 °C using a poly(glycerol monomethacrylate) steric stabilizer. 1H NMR spectroscopy indicates more than 99% HPMA conversion within 80 min, while transmission electron microscopy and dynamic light scattering studies are consistent with the final morphology being pure vesicles. Analysis of time-resolved SAXS patterns for this prototypical polymerization-induced self-assembly (PISA) formulation enables the evolution in copolymer morphology, particle diameter, mean aggregation number, solvent volume fraction, surface density of copolymer chains and their mean inter-chain separation distance at the nanoparticle surface to be monitored. Furthermore, the change in vesicle diameter and membrane thickness during the final stages of polymerization supports an 'inward growth' mechanism.

6.
J Am Chem Soc ; 141(34): 13664-13675, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31364361

ABSTRACT

Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016 , 7 , 5078 - 5090 ). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.

7.
Carbohydr Polym ; 201: 48-59, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30241844

ABSTRACT

A facile electrochemical exfoliation method was established to efficiently prepare conductive paper containing reduced graphene oxide (RGO) with the help of single chain anionic surfactant ionic liquids (SAILs). The surfactant ionic liquids are synthesized from conventional organic surfactant anions and a 1-butyl-3-methyl-imidazolium cation. For the first time the combination of SAILs and cellulose was used to directly exfoliate graphite. The ionic liquid 1-butyl-3-methyl-imidazolium dodecylbenzenesulfonate (BMIM-DBS) was shown to have notable affinity for graphene, demonstrating improved electrical properties of the conductive cellulose paper. The presence of BMIM-DBS in the system promotes five orders of magnitude enhancement of the paper electrical conductivity (2.71 × 10-5 S cm-1) compared to the native cellulose (1.97 × 10-10 S cm-1). A thorough investigation using electron microscopy and Raman spectroscopy highlights the presence of uniform graphene incorporated inside the matrices. Studies into aqueous aggregation behavior using small-angle neutron scattering (SANS) point to the ability of this compound to act as a bridge between graphene and cellulose, and is responsible for the enhanced exfoliation level and stabilization of the resulting dispersion. The simple and feasible process for producing conductive paper described here is attractive for the possibility of scaling-up this technique for mass production of conductive composites containing graphene or other layered materials.

8.
J Colloid Interface Sci ; 530: 686-694, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30015154

ABSTRACT

HYPOTHESIS: Reports on the colloidal and interfacial properties of fluorocarbon (FC) surfactants used in fire-fighting foam formulations are rare. This is primarily because these formulations are complex mixtures of different hydrocarbon (HC) and fluorocarbon (FC) surfactants. By developing a greater understanding of the individual properties of these commercial FC surfactants, links can be made between structure and respective surface/ bulk behaviour. Improved understanding of structure property relationships of FC surfactants will therefore facilitate the design of more environmentally responsible surfactant replacements. EXPERIMENTS: Surface properties of three partially fluorinated technical grade surfactants were determined using tensiometry and neutron reflection (NR), and compared with a research-grade reference surfactant (sodium perfluorooctanoate (NaPFO)). To investigate the bulk behaviour and self-assembly in solution, small-angle neutron (SANS) scattering was used. FINDINGS: All FC surfactants in this study generate very low surface tensions (< 20 mN m-1) which are comparable, and in some cases, lower than fully-fluorinated surfactant analogues. The complementary techniques (tensiometry and NR) allowed direct comparison to be made with NaPFO in terms of adsorption parameters such as surface excess and area per molecule. Surface tension data for these technical grade FC surfactants were not amenable to reliable interpretation using the Gibbs adsorption equation, however NR provided reliable results. SANS has highlighted how changes in surfactant head group structure can affect bulk properties. This work therefore provides fresh insight into the structure property relationships of some industrially relevant FC surfactants, highlighting properties which are essential for development of more environmentally friendly replacements.

9.
Colloids Surf B Biointerfaces ; 168: 201-210, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29276082

ABSTRACT

Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO2. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO2 (W/CO2) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W0) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO2 microemulsions were found to increase in size with increasing W0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO2 microemulsion droplets increased linearly with W0, and finally reached ∼39 Šand ∼78 Šat W0 = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO2 interfaces, and so play important roles for tuning the W/CO2 interfacial curvature. The super-efficient W/CO2-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.


Subject(s)
Carbon Dioxide/chemistry , Fluorocarbons/chemistry , Hydrocarbons/chemistry , Micelles , Surface-Active Agents/chemistry , Algorithms , Anisotropy , Emulsions/chemistry , Neutron Diffraction , Scattering, Small Angle , Water/chemistry
10.
Phys Chem Chem Phys ; 19(35): 23869-23877, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28726882

ABSTRACT

Presented here are the results for a novel class of hydrocarbon surfactants, termed trimethylsilyl hedgehogs (TMS-hedgehogs), due to the presence of silicon in the tails. By comparing the surface properties of these hybrid hedgehogs to purely hydrocarbon equivalents, links between performance and the structure are made. Namely, by controlling the molecular volume of the surfactant fragments, improvements can be made in surface coverage, generating lower surface energy monolayers. Small-angle neutron scattering (SANS) data have been collected showing that these novel surfactants aggregate to form ellipsoidal micelles which grow with increasing concentration. This study highlights the sensitive relationship between surface tension and the surfactant chain, for designing new super-efficient surfactants close to the limit of the lowest surface tensions possible.

11.
J Colloid Interface Sci ; 502: 210-218, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28494408

ABSTRACT

HYPOTHESIS: Reports of random copolymers capable of solubilising hydrophobic oils are rare. This is primarily because random copolymers are unlikely to self-assemble into suitable aggregates (or micelles) in water. A random copolymer with a "blocky" (or lumpy) microstructure may have potential to solubilise hydrophobic oils in water. This type of polymer would have advantages over block copolymers which are more laborious and costly to synthesise. EXPERIMENTS: The solubilising capacity of a blocky random copolymer, namely poly(methyl methacrylate-co-2-dimethylaminoethyl methacrylate) (PMMA-co-PDMAEMA) is assessed by UV-visible spectroscopy and compared with common reference surfactants. The relative solubilising performance of random copolymers (across a narrow range of DMAEMA mol % fraction) for aromatic and aliphatic oils was also studied. The morphology of the aggregates was monitored as a function of the solubilisation capacity by small-angle neutron scattering (SANS) and dynamic-light scattering (DLS). FINDINGS: Similarly to well-defined block copolymers, these random copolymers have a specific preference for solubilising aromatic over aliphatic oils. Increasing hydrophobicity of the copolymer enhances the solubilisation capacity. SANS has highlighted that aggregates become swollen and more uniform/spherical with increasing concentration of aromatic solubilisate, and that the aromatic solubilisate partitions throughout the random copolymer aggregates.

12.
Langmuir ; 33(10): 2628-2638, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28219244

ABSTRACT

A random copolymer, poly(methyl methacrylate-co-2-dimethylaminoethyl methacrylate) (poly(MMA-co-DMAEMA)) is shown to form nanoscale aggregates (NAs) (∼20 nm) at copolymer concentrations ≥10% w/w, directly from the preformed surfactant-stabilized latex (∼120 nm) in aqueous solution. The copolymer is prepared by conventional emulsion polymerization. Introducing a small mole fraction of DMAEMA (∼10%) allows the copolymer hydrophilicity to be adjusted by the pH and external temperature, generating NAs with tuneable sizes and a defined weight-average aggregation number, as observed by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). These NAs are different from the so-called mesoglobular systems and are insensitive to temperature at fixed pH. The relatively broad chemical composition distribution of the copolymer and lumpy (or blocky but not diblock) incorporation of DMAEMA mean that the NAs cannot be simply thought of as conventional polymer micelles. In the acidic pH regime, the amphiphilic copolymer exhibits a defined critical assembly concentration (CAC) and a minimum air-water surface tension of 45.2 mN m-1. This copolymer represents a convenient route to self-assembled NAs, which form directly in aqueous dispersions after pH and temperature triggers, rather than the typically applied (and time-consuming) water-induced micellization approach for common polymer micelles.

13.
Langmuir ; 33(10): 2655-2663, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28215094

ABSTRACT

For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO2 (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO2-philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g., 100-400 bar). A range of novel w/c microemulsions, stabilized by new custom-synthesized CO2-phillic, partially fluorinated surfactants, were formulated with hydrotropes and cosurfactant. The effects of water content (w = [water]/[surfactant]), surfactant structure, and hydrotrope tail length were all investigated. Dispersed water domains were probed using high pressure small-angle neutron scattering (HP-SANS), which provided evidence for elongated reversed micelles in supercritical CO2. These new micelles have significantly lower fluorination levels than previously reported (6-29 wt % cf. 14-52 wt %), and furthermore, they support higher water dispersion levels than other related systems (w = 15 cf. w = 5). The intrinsic viscosities of these w/c microemulsions were estimated based on micelle aspect ratio; from this value a relative viscosity value can be estimated through combination with the micellar volume fraction (ϕ). Combining these new results with those for all other reported systems, it has been possible to "map" predicted viscosity increases in CO2 arising from elongated reversed micelles, as a function of surfactant fluorination and micellar aspect ratio.

14.
Langmuir ; 31(30): 8205-17, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-25797065

ABSTRACT

This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.


Subject(s)
Surface-Active Agents/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Surface Properties , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...