Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 36(1): 103-12, 1995 Jan.
Article in English | MEDLINE | ID: mdl-7822137

ABSTRACT

PURPOSE: To determine whether maintenance of corneal hydration is dependent on bicarbonate ions and whether these ions can be derived from metabolic or exogenous CO2, and to investigate the relationship of transendothelial fluid movement to control of hydration. METHODS: The thickness of intact or deepithelialized rabbit corneas was measured while superfused on the endothelial surface with either 33 mM HGO3-/5% CO2 buffered media or 10 mM HPO4- buffered media in the presence and absence of inhibitors of ion transport and respiration. The corneal surface was covered with either silicone oil ("normal" corneas) or with the same media used for superfusion ("swollen" corneas). ATP and Na+,K(+)-ATPase activity were measured in endothelia scraped from the tissues after superfusion. RESULTS: Intact and deepithelialized corneas covered with oil swelled at a negligible rate (4 to 8 microns/hour) in 33 mM HCO3- medium but at 45 to 60 microns/hour in HPO4- medium. Antimycin A altered neither of these swelling rates, but ethoxzolamide (0.1 mM) caused swelling in HCO3-/CO2 (approximately 12 microns/hour above controls) with no change of rate in HPO4-. Ouabain (0.1 mM) increased swelling to 45 to 50 microns/hour in HCO3-/CO2 but had no effect in HPO4-. Saturating the oil on deepithelialized corneas with 5% CO2, or putting HCO3-/CO2 medium on the epithelial surface of intact corneas, did not alter the swelling rates seen with HPO4- superfusion. The equilibrium thickness of deepithelialized corneas swollen with HCO3-/CO2 on both surfaces was 35 microns less than that of corneas swollen in HPO4-. The difference was abolished by ouabain, which caused corneas in HCO3-/CO2 to swell an additional 30 microns but did not alter the equilibrium thickness of corneas swollen in HPO4-. Ethoxzolamide and DIDS (0.2 mM) increased the thickness in HCO3-/CO2 but not in HPO4-. Na+,K(+)-ATPase activities of endothelia were similar after HCO3-/CO2 and HPO4- superfusions, but the concentration of ATP in the HPO4(-)-superfused tissues was increased 35%. CONCLUSIONS: Normal corneal thickness can be maintained in vitro only in media that contain HCO3- at concentrations of more than 20 mM. Neither metabolic CO2 nor CO2 present in air-equilibrated, nominally HCO3(-)-free media can supply this requirement for HCO3-, even though these sources support the presumably related processes of transendothelial fluid movement and intracellular pH regulation.


Subject(s)
Bicarbonates/metabolism , Carbon Dioxide/physiology , Cornea/anatomy & histology , Endothelium, Corneal/metabolism , Adenosine Triphosphate/analysis , Animals , Biological Transport , Cornea/drug effects , Cornea/physiology , Culture Media , Endothelium, Corneal/chemistry , Ethoxzolamide/pharmacology , Ouabain/pharmacology , Rabbits , Sodium-Potassium-Exchanging ATPase/analysis , Water-Electrolyte Balance/physiology
2.
Invest Ophthalmol Vis Sci ; 35(2): 560-7, 1994 Feb.
Article in English | MEDLINE | ID: mdl-8113007

ABSTRACT

PURPOSE: To examine the relationship between the activity of the sodium pump of the corneal endothelium and corneal thickness. It was postulated that because inhibition pressure of the stroma decreases as thickness increases, a partially inhibited sodium pump would result in a new steady-state thickness of the cornea when reduced rates of fluid influx and efflux were equal. Measurements of physiologic behavior and biochemical activity were to be made in the same tissue and thus establish the relationship directly. METHODS: Rabbit corneas were superfused with a bicarbonate Ringer solution containing different concentrations of ouabain. Exposure to ouabain was either continuous for 4 hours or for an initial 10 minutes followed by ouabain-free superfusion. Thickness was measured, and, after superfusion, endothelium was removed from the corneas, sonicated, and assayed for Na(+)-K+ adenosine triphosphatase (ATPase) activity without further addition of ouabain to the assay medium. Thickness was also measured during superfusion with suboptimal concentrations of Na+ or HCO3- and with brefeldin A, an inhibitor of protein trafficking. RESULTS: Continuous exposure to ouabain caused corneas to swell, but no new steady-state thickness was reached. At low concentrations, swelling rates increased with time, as did the extent of inhibition of the Na(+)-K+ ATPase. With only a 10-minute exposure to ouabain, swelling rates with 10(-4) M to 10(-5) M decreased with the duration of ouabain-free superfusion. Similar swelling curves were obtained by reductions in Na+ or HCO3- concentrations in the superfusion medium, indicating that partial inhibition of the endothelial fluid transport processes, whether via the Na(+)-K+ ATPase or by suboptimal ionic conditions, led toward a new equilibrium thickness of the cornea. However, when superfusion was continued for more than 4 hours, the corneas exposed for 10 minutes to 3 x 10(-5) M or lower-concentration ouabain showed increasing Na(+)-K+ ATPase activity and began to thin, indicating a recovery of fluid transport capability. This recovery was blocked by addition of brefeldin A during the ouabain-free superfusion. CONCLUSIONS: Inhibition of Na(+)-K+ ATPase by low concentrations of ouabain increases with time. Temporary exposure to ouabain causes swelling at rates that decline with time as ouabain dissociates from enzyme sites. This dissociation, together with the turnover of Na(+)-K+ ATPase in the plasma membrane, can lead to recovery of normal thickness in ouabain-exposed corneas. Twenty percent of Na(+)-K+ ATPase in the endothelium is estimated to be intracellular, and about 20% of the activity can be inhibited without inducing swelling.


Subject(s)
Corneal Edema/metabolism , Endothelium, Corneal/enzymology , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Animals , Biological Transport, Active/physiology , Brefeldin A , Cornea/anatomy & histology , Cornea/metabolism , Corneal Edema/pathology , Cyclopentanes/pharmacology , Endothelium, Corneal/drug effects , Protein Synthesis Inhibitors/pharmacology , Rabbits , Sodium-Potassium-Exchanging ATPase/metabolism
3.
J Biol Chem ; 267(32): 23253-60, 1992 Nov 15.
Article in English | MEDLINE | ID: mdl-1429671

ABSTRACT

An earlier report (Matherly, L. H., Czajkowski, C. A., and Angeles, S. M. (1991) Cancer Res. 51, 3420-3426) described a K562 human erythroleukemia line (K562.4CF), characterized by an elevated uptake capacity for methotrexate (MTX) and 5-formyltetrahydrofolate, and the identification of a highly glycosylated membrane transporter (GP-MTX) by radioaffinity labeling with N-hydroxysuccinimide [3H] methotrexate. In the present study, radioaffinity-labeled GP-MTX from K562.4CF cells was isolated by Ricinus communis agglutinin I-agarose affinity chromatography, coupled with gel filtration and preparative electrophoresis. Antiserum to the purified, radio-labeled protein was raised in a rabbit and screened by immunoblot analysis of K562.4CF plasma membrane proteins or purified GP-MTX. The antiserum detected a broad GP-MTX band centered at 92 kDa on 7.5% gels. On 4-10% gels, the apparent molecular mass for GP-MTX shifted to 99 kDa. Antiserum specificity was established by quantitatively converting the immunoreactive glycoprotein in plasma membrane homogenates to its N- and O-deglycosylated forms with N- and O-glycanases, respectively. Whereas the methotrexate uptake capacity of K562.4CF cells was elevated 6.1-fold over parental cells, the GP-MTX content on immunoblots was increased approximately 3-fold. For two methotrexate-resistant K562 lines (33- and 70-fold), decreased drug uptake (28 and 18% of parental levels) closely correlated with their reduced GP-MTX contents. A GP-MTX isoform was also detected on immunoblots of membrane proteins from CCRF-CEM human lymphoblastic leukemia cells. With a transport-impaired CCRF-CEM line (13% of wild type uptake), an aberrant electrophoretic migration for GP-MTX was observed, establishing the presence of structural modifications in the transport protein. These structural differences were independent of carrier glycosylation since they were detected following the glycosidase treatments. These findings implicate important roles for distinct carrier-specific alterations in the expression of diminished drug transport in methotrexate-resistant human tumor cells.


Subject(s)
ATP-Binding Cassette Transporters , Carrier Proteins/metabolism , Drug Resistance/physiology , Membrane Glycoproteins/metabolism , Methotrexate/metabolism , Methotrexate/pharmacology , Neoplasm Proteins , Tetrahydrofolates/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Antibodies , Carrier Proteins/isolation & purification , Centrifugation, Density Gradient , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Glycoside Hydrolases , Humans , Kinetics , Leukemia, Erythroblastic, Acute , Membrane Glycoproteins/isolation & purification , Tumor Cells, Cultured
4.
Cancer Res ; 51(13): 3420-6, 1991 Jul 01.
Article in English | MEDLINE | ID: mdl-2054782

ABSTRACT

A K562 human erythroleukemia line (designated K562.4CF) was selected for increased tetrahydrofolate cofactor transport in a growth-limiting concentration (0.4 nM) of (6R,S)-5-formyltetrahydrofolate. K562.4CF cells exhibited elevated methotrexate uptake relative to parental cells, attributable to a 10-fold increased influx Vmax. The rate of methotrexate efflux in K562.4CF cells was somewhat increased (55%) as well. The transport system in K562.4CF cells had similar and high apparent binding affinities for methotrexate and 5-formyltetrahydrofolate and a markedly reduced affinity for folic acid, properties typically associated with the "classical" methotrexate/tetrahydrofolate cofactor transporter in tumor cells. Methotrexate uptake in K562.4CF cells decreased substantially under nonselective conditions; high levels of transport were restored in 0.4 nM 5-formyltetrahydrofolate. Treatment of parental and K562.4CF cells with N-hydroxysuccinimide methotrexate inhibited methotrexate influx. N-Hydroxysuccinimide-[3H]methotrexate (700 nM) radiolabeled a broadly migrating band at Mr 76,000-85,000. Incorporation from N-hydroxysuccinimide-[3H]methotrexate into this band was increased 7-fold in K562.4CF over parental cells and was blocked by unlabeled methotrexate, (6S)-5-formyltetrahydrofolate, or, to a lesser extent, folic acid. Whereas incubation with endoglycosidase F had no effect on the electrophoretic migration of the labeled protein, treatment with endoglycosidase F and glycopeptidase F, or endo-beta-galactosidase, reduced the apparent molecular weight to Mr approximately 52,000 or approximately 58,000, respectively. These results suggest that the high-affinity transporter in K562.4CF cells is an N-linked glycoprotein containing internal beta-galactosidic linkages in, or immediately after, unbranched poly-N-acetyllactosamine sequences. Differences in the level of glycosylation may, in part, account for the disparity in the apparent sizes of the homologous folate transport proteins from human and murine cells.


Subject(s)
Carrier Proteins/metabolism , Leucovorin/metabolism , Leukemia, Erythroblastic, Acute/metabolism , Membrane Glycoproteins/metabolism , Methotrexate/metabolism , Affinity Labels , Biological Transport , Cell Membrane/metabolism , Humans , Kinetics , Structure-Activity Relationship , Tumor Cells, Cultured
5.
Cancer Res ; 50(11): 3262-9, 1990 Jun 01.
Article in English | MEDLINE | ID: mdl-2139802

ABSTRACT

A major portion of the intracellular folates in L1210 cells grown in (6R,S)-5-formyltetrahydrofolate (leucovorin) was bound to cytosolic proteins when cell extracts were fractionated by rapid gel filtration or adsorption with activated charcoal. Only low levels of intracellular folates were associated with mitochondria (less than 5%). Protein-bound folates comprised 37-100% of the cytosolic cofactors following growth in 2-600 nM 5-formyltetrahydrofolate. Total intracellular folates increased in proportion to the changes in media folate concentration; however, binding was saturable. The maximum level of protein-bound folates in L1210 cells was 66 pmol/mg protein. Protein-bound folates were also detected in HT29 human colon adenocarcinoma cells grown in 5-formyltetrahydrofolate (maximum, 11 pmol/mg protein). For both lines, folate binding was specific for the tetrahydrofolate and 5,10-methylenetetrahydrofolate pool, and, to a lesser extent, 5-methyltetrahydrofolate. Extremely low levels of protein-bound 5-formyl-, 10-formyl-, and 5,10-methenyltetrahydrofolates were measured, even though considerable amounts were detected intracellularly. Pentaglutamyl folates were the predominant cofactor forms in L1210 cells; conversely, the tetraglutamates were the most abundant protein-bound folate derivatives. Increasing media concentrations of 5-formyltetrahydrofolate potentiated 5-fluoro-2'-deoxyuridine cytotoxicity. For L1210 cells, essentially all of the intracellular tetrahydrofolate and 5,10-methylenetetrahydrofolate fraction was protein bound over the concentration range of 5-formyltetrahydrofolate which maximally augmented fluoropyrimidine cytotoxicity. The relative changes in the 50% inhibitory concentrations for fluorodeoxyuridine directly approximated the increases in the levels of protein-bound tetrahydrofolates in L1210 cells. There was no direct relationship between the levels of unbound folates and fluorodeoxyuridine cytotoxicity. Similar results were obtained with HT29 cells. The major folate-binding protein in L1210 cells eluted during Sephacryl S-300 chromatography with a molecular weight of approximately 200,000; a small amount of a higher molecular weight folate-binding protein (Mr 450,000) was also detected. These findings support the concept of a compartmentation of endogenous folates involving specific binding to cytosolic proteins. These associations may regulate reduced folate availability for metabolic processes, and also mediate utilization of 5,10-methylenetetrahydrofolate for ternary complex formation with thymidylate synthase in cells treated with fluoropyrimidines. In this fashion, the levels of protein-bound tetrahydrofolates could represent an additional, previously unrecognized, determinant of fluoropyrimidine pharmacological activity toward mammalian cells.


Subject(s)
Adenocarcinoma/metabolism , Colonic Neoplasms/metabolism , Floxuridine/pharmacology , Leukemia L1210/metabolism , Tetrahydrofolates/metabolism , Adenocarcinoma/pathology , Animals , Carrier Proteins/analysis , Cell Division/drug effects , Chromatography, Gel , Colonic Neoplasms/pathology , Folic Acid/metabolism , Humans , Leucovorin/metabolism , Leukemia L1210/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...