Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837046

ABSTRACT

This article investigates the relationships between different chemical compositions of simulated cement concrete pore solutions and changes on the surface of zeolite rock with potassium clinoptilolite as its main component. The changes were studied using X-ray diffraction (XRD), thermal analysis (DTA-TG) and scanning electron microscopy (SEM). Zeolite powder samples and a ground section of 16-64 mm grain were tested. The simulated pore solutions were based on Ca, Na, K hydroxides and K2SO4. It was found that 100% of Ca(OH)2 in the systems could react between 7 and 180 days of hydration due to pozzolanic and side reactions. As the degree of clinoptilolite conversion increased, it became more difficult to detect it in X-ray patterns. At the same time, various microstructural changes could be observed. As a result of the reactions that occurred, hydrated calcium silicates, sulfate and carbonate compounds were formed. Potassium hydroxide had a more substantial effect on clinoptilolite reactivity than sodium hydroxide. This effect can be enhanced by the presence of SO23- ions in the solution.

2.
Materials (Basel) ; 15(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35057268

ABSTRACT

This paper aims to investigate the possibility of using waste glass of different colours as a complete substitute for quartz sand in autoclaved silica-lime samples. On the one hand, this increases the possibility of recycling waste glass; on the other hand, it allows obtaining autoclaved materials with better properties. In this research, reference samples with quartz sand (R) and white (WG), brown (BG), and green (GG) waste container glass were made. Parameters such as compressive strength, bulk density, and water absorption were examined on all samples. The samples were examined using a scanning electron microscope with an energy dispersive spectroscopy detector (SEM/EDS) and subjected to X-ray diffraction (XRD) analysis. The WG samples showed 187% higher compressive strength, BG by 159%, and GG by 134% compared to sample R. In comparison to the reference sample, volumetric density was 16.8% lower for sample WG, 13.2% lower for BG, and 7.1% lower for GG. Water absorption increased as bulk density decreased. The WG sample achieved the highest water absorption value, 15.84%. An X-ray diffraction analysis confirmed the presence of calcite, portlandite, and tobermorite phases. Depending on the silica aggregate used, there were differences in phase composition linked to compressive strength. Hydrated calcium silicates with varying crystallisation degrees were visible in the microstructure image.

3.
Materials (Basel) ; 16(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614654

ABSTRACT

The cement industry is one of the most developed industries in the world. However, it consumes excessive amounts of natural resources and can negatively impact the environment through its by-products: carbon dioxide (CO2), cement clinker dust (CKD) and cement bypass dust (CBPD). The amount of dust generated in the cement clinker production process depends largely on the technology used. It typically ranges from 0 to 25% by weight of the clinker, and a single cement plant is capable of producing 1000 tons of CBPD per day. Despite practical applications in many areas, such as soil stabilisation, concrete mix production, chemical processing or ceramic and brick production, the dust is still stored in heaps. This poses an environmental challenge, so new ways of managing it are being sought. Due to the significant content of free lime (>30%) in CBPD, this paper uses cement bypass dust as a binder replacement in autoclaved silica−lime products. Indeed, the basic composition of silicate bricks includes 92% sand, 8% lime and water. The investigation shows that it is possible to completely replace the binder with CBPD dust in the autoclaved products. The obtained results showed that all properties of produced bricks were satisfactory. The study concluded that many benefits could be achieved by using cement bypass dust in the production of bricks, including economic bricks for building, reducing the dependency on natural resources, reducing pollution and reducing negative impacts on the environment.

4.
Materials (Basel) ; 14(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34947230

ABSTRACT

In this article, the effect of cement type on selected properties of plastering mortars containing a cellulose ether admixture was studied. In the research, commercial CEM I Portland cement, CEM II and CEM III, differing in the type and amount of mineral additives, and cement class, were used as binders. Tests of consistency, bulk density, water retention value (WRV), mechanical properties and calorimetric tests were performed. It was proved that the type of cement had no effect on water retention, which is regulated by the cellulose ether. All mortars modified with the admixture were characterized by WRV of about 99%. High water retention is closely related to the action of the cellulose ether admixture. As a result of the research, the possibility of using cement with additives as components of plasters was confirmed. However, attention should be paid to the consistency, mechanical properties of the tested mortars and changes in the pastes during the hydration process. Different effects of additives resulted from increasing or decreasing the consistency of mortars; the flow was in the range from 155 mm to 169 mm. Considering the compressive strength, all plasters can be classified as category III or IV, because the mortars attained the strength required by the standard, of at least 3.5 MPa. The processes of hydration of pastes were carried out with different intensity. In conclusion, the obtained results indicate the possibility of using CEM II and CEM III cements to produce plastering mortars, without changing the effect of water retention.

5.
Materials (Basel) ; 14(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204489

ABSTRACT

Wastewater treatment processes produce sewage sludge (SS), which, in line with environmental sustainability principles, can be a valuable source of matter in the production of lightweight expanded clay aggregate (LECA). The literature on the influence of SS content and sintering temperature on the properties of LECA is scarce. This paper aims to statistically evaluate the effects of SS content and sintering temperature on LECA physical properties. Total porosity, pore volume, and apparent density were determined with the use of a density analyzer. A helium pycnometer was utilized to determine the specific density. Closed porosity was calculated. The test results demonstrated a statistically significant influence of the SS content on the specific density and water absorption of LECA. The sintering temperature had a significant effect on the specific density, apparent density, total porosity, closed porosity, total volume of pores, and water absorption. It was proved that a broad range of the SS content is admissible in the raw material mass for the production of LECA.

6.
Materials (Basel) ; 14(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435605

ABSTRACT

Existing buildings, especially historical buildings, require periodic or situational diagnostic tests. If a building is in use, advanced non-destructive or semi-destructive methods should be used. In the diagnosis of reinforced concrete structures, tests allowing to assess the condition of the reinforcement and concrete cover are particularly important. The article presents non-destructive and semi-destructive research methods that are used for such tests, as well as the results of tests performed for selected elements of a historic water tower structure. The assessment of the corrosion risk of the reinforcement was carried out with the use of a semi-destructive galvanostatic pulse method. The protective properties of the concrete cover were checked by the carbonation test and the phase analysis of the concrete. X-ray diffractometry and thermal analysis methods were used for this. In order to determine the position of the reinforcement and to estimate the concrete cover thickness distribution, a ferromagnetic detection system was used. The comprehensive application of several test methods allowed mutual verification of the results and the drawing of reliable conclusions. The results indicated a very poor state of the reinforcement, loss in the depth of cover and sulphate corrosion.

7.
Materials (Basel) ; 13(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823704

ABSTRACT

This study examined the physical properties of a three-component mineral binder that is typically used in deep-cold recycling. Test binders were produced using Portland cement, hydrated lime, and cement bypass dust (CBPD) as a byproduct derived from cement production. The suitability of CBPD for use in road binders was assessed. Effects of the three-component binder composition on the setting time, soundness, consistency, and tensile and compressive strengths of the cement pastes and mortars were determined. The pastes and mortars of the same consistency obtained at different w/b ratios were tested. On this basis, the mixture proportions resulting in road binders satisfying the requirements of PN-EN 13282-2:2015 were determined. By mixing cement, lime, and CBPD during the tests, binder classes N1 to N3 were obtained. The replacement of 40% of cement mass with the CBPD high in free lime produced road binders suitable for recycled base layers. The total content of CBPD and hydrated lime in the road binder should not exceed 50% by mass. The potential risk of mortar strength reduction due to KCl recrystallization was discussed.

8.
Materials (Basel) ; 13(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397524

ABSTRACT

The primary aim of this article is to focus on the alkali-silica reaction (ASR) in mortar specimens containing coloured waste glass used as an aggregate. Mortar expansion was measured using the ASTM C 1260 accelerated test procedure until the specimens disintegrated. Special attention was paid to the microscopic examination of the damaged mortar. Various methods were used for this purpose, including optical microscopy in reflected and transmitted light with one and two crossed polarizers. The specimens were also subjected to the scanning electron microscopy observations with energy dispersive spectroscopy (SEM-EDS). The data obtained from these techniques provided information on the mechanism of glass-containing mortar degradation due to ASR and also allowed the comparison of different microscopic techniques in terms of the information they can provide on ASR occurrence.

9.
Materials (Basel) ; 13(5)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106403

ABSTRACT

In 2016, an average of 5.0 tons of waste per household was generated in the European Union (including waste glass). In the same year, 45.7% of the waste glass in the EU was recycled. The incorporation of recycled waste glass in building materials, i.e., concrete, cements, or ceramics, is very popular around the world because of the environmental problems and costs connected with their disposal and recycling. A less known solution, however, is using the waste glass in composite products, including sand-lime. The aim of this work was to assess the role of recycled container waste glass in a sand-lime mix. The waste was used as a substitute for the quartz sand. To verify the suitability of recycled glass for the production of sand-lime products, the physical and mechanical properties of sand-lime specimens were examined. Four series of specimens were made: 0%, 33%, 66%, and 100% of recycled waste glass (RG) as a sand (FA) replacement. The binder mass did not change (8%). The research results showed that ternary mixtures of lime, sand, and recycled waste glass had a higher compressive strength and lower density compared to the reference specimen. The sand-lime specimen containing 100% (RG) increased the compressive strength by 287% compared to that of the control specimen. The increase in the parameters was proportional to the amount of the replacement in the mixtures.

10.
Materials (Basel) ; 14(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396575

ABSTRACT

The author wishes to make the following correction to this paper [...].

11.
Materials (Basel) ; 13(24)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419240

ABSTRACT

In this article, the effect of hydroxyethyl methyl cellulose (HEMC), which is a polymeric viscosity modifying admixture on the mineral based composites setting processes, was studied. Previous studies available in the literature included the evaluation of the influence of this admixture on the hydration processes of cement or lime pastes. In this paper, the analysis of this issue was extended to include cement-lime composites. The composition of the pastes and mortars differed in the type of binder (the tests were carried out on cement-based and cement-lime-based materials, in which the cement was replaced in 50% with hydrated lime), as well as the amount and viscosity of the admixture. The study of mortars setting processes and hardening processes using the ultrasonic method was supplemented in the work with calorimetric measurements and phases analysis by the X-ray diffraction method. Finally, it was found that the HEMC reduces the rate of a hydration reaction in cement and cement-lime pastes. The amount of admixture used has a greater influence on the changes taking place during the setting process than the admixture viscosity or the type of binder.

12.
Materials (Basel) ; 11(6)2018 May 30.
Article in English | MEDLINE | ID: mdl-29848958

ABSTRACT

The mechanism of concrete degradation as a result of an alkali-silica reaction (ASR) largely depends on the mineral composition and microstructure of the reactive aggregate. This paper shows the reactivity results of quartz-glaukonitic sandstone, which is mainly responsible for the reactivity of some post-glacial gravels, available in Poland. After initial petrographic observations under a light microscope, the mode of sandstone degradation triggered by the reaction with sodium and potassium hydroxides was identified using scanning electron microscopy (SEM). It has been found that chalcedony agglomerates present in sandstone are separated from the rock matrix and subsequently cause the cracks formation in this matrix. Additionally, microcrystalline and potentially reactive silica is also dispersed in sandstone cement.

SELECTION OF CITATIONS
SEARCH DETAIL
...