Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108406

ABSTRACT

Maternal immune activation (MIA) is an important risk factor for neurodevelopmental disorders such as autism. The aim of the current study was to investigate the development-dependent changes in the mitochondrial function of MIA-exposed offspring, which may contribute to autism-like deficits. MIA was evoked by the single intraperitoneal administration of lipopolysaccharide to pregnant rats at gestation day 9.5, and several aspects of mitochondrial function in fetuses and in the brains of seven-day-old pups and adolescent offspring were analyzed along with oxidative stress parameters measurement. It was found that MIA significantly increased the activity of NADPH oxidase (NOX), an enzyme generating reactive oxygen species (ROS) in the fetuses and in the brain of seven-day-old pups, but not in the adolescent offspring. Although a lower mitochondrial membrane potential accompanied by a decreased ATP level was already observed in the fetuses and in the brain of seven-day-old pups, persistent alterations of ROS, mitochondrial membrane depolarization, and lower ATP generation with concomitant electron transport chain complexes downregulation were observed only in the adolescent offspring. We suggest that ROS observed in infancy are most likely of a NOX activity origin, whereas in adolescence, ROS are produced by damaged mitochondria. The accumulation of dysfunctional mitochondria leads to the intense release of free radicals that trigger oxidative stress and neuroinflammation, resulting in an interlinked vicious cascade.


Subject(s)
Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Animals , Reactive Oxygen Species , Brain , Vitamins , Mitochondria , Adenosine Triphosphate , Behavior, Animal/physiology , Disease Models, Animal
2.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37108467

ABSTRACT

Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.


Subject(s)
Autism Spectrum Disorder , Tuberous Sclerosis , Mice , Animals , Male , Autism Spectrum Disorder/genetics , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cytoskeletal Proteins/genetics , Microtubules/metabolism , Mammals/metabolism
3.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613460

ABSTRACT

The correct phagocytic activity of microglia is a prerequisite for maintaining homeostasis in the brain. In the analysis of mechanisms regulating microglial phagocytosis, we focused on the bromodomain and extraterminal domain (BET) proteins: Brd2, Brd3, and Brd4, the acetylation code readers that control gene expression in cooperation with transcription factors. We used pharmacological (JQ1) and genetic (siRNA) inhibition of BET proteins in murine microglial cell line BV2. Inhibition of BET proteins reduced the phagocytic activity of BV2, as determined by using a fluorescent microspheres-based assay and fluorescently labelled amyloid-beta peptides. Gene silencing experiments demonstrated that all brain-existing BET isoforms control phagocytosis in microglia. From a set of 84 phagocytosis-related genes, we have found the attenuation of the expression of 14: Siglec1, Sirpb1a, Cd36, Clec7a, Itgam, Tlr3, Fcgr1, Cd14, Marco, Pld1, Fcgr2b, Anxa1, Tnf, Nod1, upon BET inhibition. Further analysis of the mRNA level of other phagocytosis-related genes which were involved in the pathomechanism of Alzheimer's disease demonstrated that JQ1 significantly reduced the expression of Cd33, Trem2, and Zyx. Our results indicate the important role of BET proteins in controlling microglial phagocytosis; therefore, targeting BET may be the efficient method of modulating microglial activity.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Phagocytes/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769106

ABSTRACT

The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer's disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia-neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Glutamic Acid/metabolism , Microglia/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Amyloid beta-Peptides/metabolism , Animals , Humans , Neuroinflammatory Diseases/metabolism , Receptor Cross-Talk
5.
PLoS One ; 16(11): e0259740, 2021.
Article in English | MEDLINE | ID: mdl-34793515

ABSTRACT

In the current study, we analyzed the effects of the systemic inflammatory response (SIR) and amyloid ß (Aß) peptide on the expression of genes encoding cyclins and cyclin-dependent kinase (Cdk) in: (i) PC12 cells overexpressing human beta amyloid precursor protein (ßAPP), wild-type (APPwt-PC12), or carrying the Swedish mutantion (APPsw-PC12); (ii) the murine hippocampus during SIR; and (iii) Alzheimer's disease (AD) brain. In APPwt-PC12 expression of cyclin D2 (cD2) was exclusively reduced, and in APPsw-PC12 cyclins cD2 and also cA1 were down-regulated, but cA2, cB1, cB2, and cE1 were up-regulated. In the SIR cD2, cB2, cE1 were found to be significantly down-regulated and cD3, Cdk5, and Cdk7 were significantly up-regulated. Cyclin cD2 was also found to be down-regulated in AD neocortex and hippocampus. Our novel data indicate that Aß peptide and inflammation both significantly decreased the expression of cD2, suggesting that Aß peptides may also contribute to downregulation of cD2 in AD brain.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cyclin D2/metabolism , Inflammation/metabolism , Animals , Female , Humans , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction
6.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576223

ABSTRACT

Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.


Subject(s)
Autism Spectrum Disorder/physiopathology , Synapses , Animals , Animals, Genetically Modified , Autism Spectrum Disorder/genetics , Behavior, Animal , Brain/physiology , Cell Nucleus/metabolism , Cerebellum/metabolism , Cerebral Cortex/metabolism , Densitometry , Haploinsufficiency , Hippocampus/metabolism , Male , Mice , Microscopy, Electron, Transmission , Organ Size , Phosphorylation , RNA, Messenger/metabolism , Recognition, Psychology , Signal Transduction , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics
7.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105802

ABSTRACT

Acute systemic inflammatory response (SIR) triggers an alteration in the transcription of brain genes related to neuroinflammation, oxidative stress and cells death. These changes are also characteristic for Alzheimer's disease (AD) neuropathology. Our aim was to evaluate gene expression patterns in the mouse hippocampus (MH) by using microarray technology 12 and 96 h after SIR evoked by lipopolysaccharide (LPS). The results were compared with microarray analysis of human postmortem hippocampal AD tissues. It was found that 12 h after LPS administration the expression of 231 genes in MH was significantly altered (FC > 2.0); however, after 96 h only the S100a8 gene encoding calgranulin A was activated (FC = 2.9). Gene ontology enrichment analysis demonstrated the alteration of gene expression related mostly to the immune-response including the gene Lcn2 for Lipocalin 2 (FC = 237.8), involved in glia neurotoxicity. The expression of genes coding proteins involved in epigenetic regulation, histone deacetylases (Hdac4,5,8,9,11) and bromo- and extraterminal domain protein Brd3 were downregulated; however, Brd2 was found to be upregulated. Remarkably, the significant increase in expression of Lcn2, S100a8, S100a9 and also Saa3 and Ch25h, was found in AD brains suggesting that early changes of immune-response genes evoked by mild SIR could be crucial in AD pathogenesis.


Subject(s)
Alzheimer Disease/genetics , Calcium/metabolism , Hippocampus/physiology , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/immunology , Aged , Animals , Case-Control Studies , Female , Hippocampus/drug effects , Homeostasis/genetics , Homeostasis/immunology , Humans , Immunity/genetics , Lipopolysaccharides/toxicity , Male , Mice, Inbred C57BL , Middle Aged , Transcriptome
8.
Int J Mol Sci ; 21(11)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521803

ABSTRACT

Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.


Subject(s)
Cerebral Cortex/immunology , Cerebral Cortex/metabolism , Encephalitis/etiology , Encephalitis/metabolism , Immunity , Maternal Exposure , Prenatal Exposure Delayed Effects , Synapses/metabolism , Age Factors , Animals , Autistic Disorder/etiology , Autistic Disorder/metabolism , Autistic Disorder/psychology , Behavior, Animal , Cerebral Cortex/pathology , Disease Models, Animal , Disease Susceptibility , Encephalitis/pathology , Female , Lipopolysaccharides/adverse effects , Maternal Exposure/adverse effects , Oxidative Stress , Phenotype , Pregnancy , Rats
9.
Front Mol Neurosci ; 13: 555290, 2020.
Article in English | MEDLINE | ID: mdl-33519375

ABSTRACT

Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders in offspring, but the pathomechanism is largely unknown. The aim of our study was to analyse the molecular mechanisms contributing to synaptic alterations in hippocampi of adolescent rats exposed prenatally to MIA. MIA was evoked in pregnant female rats by i.p. administration of lipopolysaccharide at gestation day 9.5. Hippocampi of offspring (52-53-days-old rats) were analysed using transmission electron microscopy (TEM), qPCR and Western blotting. Moreover, mitochondrial membrane potential, activity of respiratory complexes, and changes in glutathione system were measured. It was found that MIA induced changes in hippocampi morphology, especially in the ultrastructure of synapses, including synaptic mitochondria, which were accompanied by impairment of mitochondrial electron transport chain and decreased mitochondrial membrane potential. These phenomena were in agreement with increased generation of reactive oxygen species, which was evidenced by a decreased reduced/oxidised glutathione ratio and an increased level of dichlorofluorescein (DCF) oxidation. Activation of cyclin-dependent kinase 5, and phosphorylation of glycogen synthase kinase 3ß on Ser9 occurred, leading to its inhibition and, accordingly, to hypophosphorylation of microtubule associated protein tau (MAPT). Abnormal phosphorylation and dysfunction of MAPT, the manager of the neuronal cytoskeleton, harmonised with changes in synaptic proteins. In conclusion, this is the first study demonstrating widespread synaptic changes in hippocampi of adolescent offspring prenatally exposed to MIA.

10.
Mol Neurobiol ; 57(3): 1374-1388, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31734880

ABSTRACT

A growing body of evidence indicates that pathological forms of amyloid beta (Aß) peptide contribute to neuronal degeneration and synaptic loss in Alzheimer's disease (AD). In this study, we investigated the impact of exogenous Aß1-42 oligomers (AßO) and endogenously liberated Aß peptides on transcription of genes for anti-oxidative and mitochondria-related proteins in cell lines (neuronal SH-SY5Y and microglial BV2) and in brain cortex of transgenic AD (Tg-AD) mice, respectively. Our results demonstrated significant AßO-evoked changes in transcription of genes in SH-SY5Y cells, where AßO enhanced expression of Sod1, Cat, mt-Nd1, Bcl2, and attenuated Sirt5, Sod2 and Sdha. In BV2 line, AßO increased the level of mRNA for Sod2, Dnm1l, Bcl2, and decreased for Gpx4, Sirt1, Sirt3, mt-Nd1, Sdha and Mfn2. Then, AßO enhanced free radicals level and impaired mitochondrial membrane potential only in SH-SY5Y cells, but reduced viability of both cell types. Inhibitor of poly(ADP-ribose)polymerase-1 and activator of sirtuin-1 more efficiently enhanced viability of SH-SY5Y than BV2 affected by AßO. Analysis of brain cortex of Tg-AD mice confirmed significant downregulation of Sirt1, Mfn1 and mt-Nd1 and upregulation of Dnm1l. In human AD brain, changes of microRNA pattern (miRNA-9, miRNA-34a, miRNA-146a and miRNA-155) seem to be responsible for decrease in Sirt1 expression. Overall, our results demonstrated a diverse response of neuronal and microglial cells to AßO toxicity. Alterations of genes encoding Sirt1, Mfn1 and Drp1 in an experimental model of AD suggest that modulation of mitochondria dynamics and Sirt1, including miRNA strategy, may be crucial for improvement of AD therapy.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Mitochondrial Proteins/toxicity , Oxidative Stress/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Humans , Mice , MicroRNAs/metabolism , Microglia/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neurons/metabolism
11.
Mol Neurobiol ; 56(1): 125-140, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29681024

ABSTRACT

α-Synuclein (ASN) and parkin, a multifunctional E3 ubiquitin ligase, are two proteins that are associated with the pathophysiology of Parkinson's disease (PD). Excessive release of ASN, its oligomerization, aggregation, and deposition in the cytoplasm contribute to neuronal injury and cell death through oxidative-nitrosative stress induction, mitochondrial impairment, and synaptic dysfunction. In contrast, overexpression of parkin provides protection against cellular stresses and prevents dopaminergic neural cell loss in several animal models of PD. However, the influence of ASN on the function of parkin is largely unknown. Therefore, the aim of this study was to investigate the effect of extracellular ASN oligomers on parkin expression, S-nitrosylation, as well as its activity. For these investigations, we used rat pheochromocytoma (PC12) cell line treated with exogenous oligomeric ASN as well as PC12 cells with parkin overexpression and parkin knock-down. The experiments were performed using spectrophotometric, spectrofluorometric, and immunochemical methods. We found that exogenous ASN oligomers induce oxidative/nitrosative stress leading to parkin S-nitrosylation. Moreover, this posttranslational modification induced the elevation of parkin autoubiquitination and degradation of the protein. The decreased parkin levels resulted in significant cell death, whereas parkin overexpression protected against toxicity induced by extracellular ASN oligomers. We conclude that lowering parkin levels by extracellular ASN may significantly contribute to the propagation of neurodegeneration in PD pathology through accumulation of defective proteins as a consequence of parkin degradation.


Subject(s)
Extracellular Space/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , Animals , Cell Survival , Homeostasis , Humans , Nitric Oxide/metabolism , Nitrosation , Oxidative Stress , PC12 Cells , Protein Multimerization , Rats , Ubiquitination , alpha-Synuclein/chemistry , alpha-Synuclein/ultrastructure
12.
J Neuroinflammation ; 15(1): 1, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29301548

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 5 (Cdk5) belongs to the family of proline-directed serine/threonine kinases and plays a critical role in neuronal differentiation, migration, synaptogenesis, plasticity, neurotransmission and apoptosis. The deregulation of Cdk5 activity was observed in post mortem analysis of brain tissue of Alzheimer's disease (AD) patients, suggesting the involvement of Cdk5 in the pathomechanism of this neurodegenerative disease. However, our recent study demonstrated the important function of Cdk5 in regulating inflammatory reaction. METHODS: Since the role of Cdk5 in regulation of inflammatory signalling in AD is unknown, we investigated the involvement of Cdk5 in neuroinflammation induced by single intracerebroventricular (icv) injection of amyloid beta protein (Aß) oligomers in mouse. The brain tissue was analysed up to 35 days post injection. Roscovitine (intraperitoneal administration) was used as a potent Cdk5 inhibitor. The experiments were also performed on human neuroblastoma SH-SY5Y as well as mouse BV2 cell lines treated with exogenous oligomeric Aß. RESULTS: Our results demonstrated that single injection of Aß oligomers induces long-lasting activation of microglia and astrocytes in the hippocampus. We observed also profound, early inflammatory response in the mice hippocampus, leading to the significant elevation of pro-inflammatory cytokines expression (e.g. TNF-α, IL-1ß, IL-6). Moreover, Aß oligomers elevated the formation of truncated protein p25 in mouse hippocampus and induced overactivation of Cdk5 in neuronal cells. Importantly, administration of roscovitine reduced the inflammatory processes evoked by Aß in the hippocampus, leading to the significant decrease of cytokines level. CONCLUSIONS: These studies clearly show the involvement of Cdk5 in modulation of brain inflammatory response induced by Aß and may indicate this kinase as a novel target for pharmacological intervention in AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Hippocampus/metabolism , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Peptide Fragments/toxicity , Animals , Cell Line, Tumor , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Protein Kinase Inhibitors/pharmacology , Roscovitine/pharmacology
13.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 281-288, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29128369

ABSTRACT

Alzheimer's disease (AD) is characterized by the release of amyloid beta peptides (Aß) in the form of monomers/oligomers which may lead to oxidative stress, mitochondria dysfunction, synaptic loss, neuroinflammation and, in consequence, to overactivation of poly(ADP-ribose) polymerase-1 (PARP-1). However, Aß peptides are also released in the brain ischemia, traumatic injury and in inflammatory response. PARP-1 is suggested to be a promising target in therapy of neurodegenerative disorders. We investigated the impact of PARP-1 inhibition on transcription of mitochondria-related genes in PC12 cells. Moreover, the effect of PARP-1 inhibitor (PJ34) on cells subjected to Aß oligomers (AßO) - evoked stress was analyzed. Our data demonstrated that inhibition of PARP-1 in PC12 cells enhanced the transcription of genes for antioxidative enzymes (Sod1, Gpx1, Gpx4), activated genes regulating mitochondrial fission/fusion (Mfn1, Mfn2, Dnm1l, Opa1, Fis1), subunits of ETC complexes (mt-Nd1, Sdha, mt-Cytb) and modulated expression of several TFs, enhanced Foxo1 and decreased Nrf1, Stat6, Nfkb1. AßO elevated free radicals concentration, decreased mitochondria membrane potential (MMP) and cell viability after 24h. Gene transcription was not affected by AßO after 24h, but was significantly downregulated after 96h. In AßO stress, PJ34 exerted stimulatory effect on expression of several genes (Gpx1, Gpx4, Opa1, Mfn2, Fis1 and Sdha), decreased transcription of numerous TFs (Nrf1, Tfam, Stat3, Stat6, Trp53, Nfkb1) and prevented oxidative stress. Our results indicated that PARP-1 inhibition significantly enhanced transcription of genes involved in antioxidative defense and in regulation of mitochondria function, but was not able to ameliorate cells viability affected by Aß.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Gene Expression Regulation , Mitochondria/metabolism , Mitochondrial Proteins/biosynthesis , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Animals , Mitochondria/genetics , Mitochondrial Proteins/genetics , PC12 Cells , Poly (ADP-Ribose) Polymerase-1/genetics , Rats
14.
Purinergic Signal ; 13(3): 347-361, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28516276

ABSTRACT

Abnormalities of alpha-synuclein (ASN), the main component of protein deposits (Lewy bodies), were observed in Parkinson's disease (PD), dementia with Lewy bodies, Alzheimer's disease, and other neurodegenerative disorders. These alterations include increase in the levels of soluble ASN oligomers in the extracellular space. Numerous works have identified several mechanisms of their toxicity, including stimulation of the microglial P2X7 receptor leading to oxidative stress. While the significant role of purinergic signaling-particularly, P2 family receptors-in neurodegenerative disorders is well known, the interaction of extracellular soluble ASN with neuronal purinergic receptors is yet to be studied. Therefore, in this study, we have investigated the effect of ASN on P2 purinergic receptors and ATP-dependent signaling. We used neuroblastoma SH-SY5Y cell line and rat synaptoneurosomes treated with exogenous soluble ASN. The experiments were performed using spectrofluorometric, radiochemical, and immunochemical methods. We found the following: (i) ASN-induced intracellular free calcium mobilization in neuronal cells and nerve endings depends on the activation of purinergic P2X7 receptors; (ii) activation of P2X7 receptors leads to pannexin 1 recruitment to form an active complex responsible for ATP release; and (iii) ASN greatly decreases the activity of extracellular ecto-ATPase responsible for ATP degradation. Thus, it is concluded that purinergic receptors might be putative pharmacological targets in the molecular mechanism of extracellular ASN toxicity. Interference with P2X7 signaling seems to be a promising strategy for the prevention or therapy of PD and other neurodegenerative disorders.


Subject(s)
Adenosine Triphosphate/metabolism , Connexins/metabolism , Microglia/drug effects , Nerve Tissue Proteins/metabolism , Receptors, Purinergic P2X7/metabolism , alpha-Synuclein/pharmacology , Animals , Calcium/metabolism , Cell Line, Tumor , Extracellular Space/drug effects , Extracellular Space/metabolism , Humans , Male , Rats, Wistar
15.
Neurochem Int ; 108: 66-77, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28238791

ABSTRACT

Neuroinflammation and oxidative stress are key intertwined pathological factors in many neurological, particularly neurodegenerative diseases, such as Alzheimer's and Parkinson's disorders as well as autism. The present study was conducted to evaluate the protective effects of Selol, an organic selenium donor, against lipopolysaccharide (LPS)-mediated inflammation in rat brain. The results demonstrated that the peripheral administration of LPS in a dose of 100 µg/kg b.w. evoked typical pathological reaction known as systemic inflammatory response. Moreover, we observed elevated blood levels of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, as well as increased concentration of tumor necrosis factor-α (TNF-α) in LPS-treated animals. Selol significantly prevented these LPS-evoked changes. Subsequently, Selol protected against LPS-induced up-regulation of proinflammatory cytokines (Tnfa, Ifng, Il6) in rat brain cortex. The molecular mechanisms through which Selol prevented the neuroinflammation were associated with the inhibition of oxidized glutathione (GSSG) accumulation and with an increase of glutathione-associated enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR) as well as thioredoxin reductase (TrxR) activity and expression. Finally, we observed that Selol administration effectively protected against LPS-induced changes in the expression of brain-derived neurotrophic factor (Bdnf). In conclusion, our studies indicated that Selol effectively protects against LPS-induced neuroinflammation by inhibiting pro-inflammatory cytokine release, by boosting antioxidant systems, and by augmenting BDNF level. Therefore, Selol could be a multi-potent and effective drug useful in the treatment and prevention of brain disorders associated with neuroinflammation.


Subject(s)
Brain/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Oxidative Stress/physiology , Selenium Compounds/pharmacology , Selenium/metabolism , Animals , Brain/drug effects , Female , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/antagonists & inhibitors , Oxidative Stress/drug effects , Random Allocation , Rats , Rats, Wistar , Selenium Compounds/therapeutic use
16.
Neurochem Int ; 93: 103-12, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26806339

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) is critical for nervous system's development and function, and its aberrant activation contributes to pathomechanism of Alzheimer's disease and other neurodegenerative disorders. It was recently suggested that Cdk5 may participate in regulation of inflammatory signalling. The aim of this study was to analyse the mechanisms involved in regulating Cdk5 activity in the brain during systemic inflammatory response (SIR) as well as the involvement of Cdk5 in controlling the expression of inflammatory genes. Genetic and biochemical alterations in hippocampus were analysed 3 and 12 h after intraperitoneal injection of lipopolysaccharide. We observed an increase in both Cdk5 gene expression and protein level. Moreover, phosphorylation of Cdk5 on Ser159 was significantly enhanced. Also transcription of Cdk5-regulatory protein (p35/Cdk5r1) was augmented, and the level of p25, calpain-dependent cleavage product of p35, was increased. All these results demonstrated rapid activation of Cdk5 in the brain during SIR. Hyperactivity of Cdk5 contributed to enhanced phosphorylation of tau and glycogen synthase kinase 3ß. Inhibition of Cdk5 with Roscovitine reduced activation of NF-κB and expression of inflammation-related genes, demonstrating the critical role of Cdk5 in regulation of gene transcription during SIR.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Gene Expression , Hippocampus/enzymology , Systemic Inflammatory Response Syndrome/enzymology , Animals , Male , Mice , Mice, Inbred C57BL , Systemic Inflammatory Response Syndrome/genetics
17.
J Neurochem ; 136(2): 222-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26376455

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or ß-amyloid peptide (Aß) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aß, or interactions of the Aß - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Neurodegenerative Diseases/metabolism , Protein Folding , Amyloid beta-Peptides/metabolism , Animals , Humans , Signal Transduction , alpha-Synuclein , tau Proteins
18.
Neurochem Res ; 41(1-2): 243-57, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26677076

ABSTRACT

Inflammatory processes and alterations of lipid metabolism play a crucial role in Alzheimer's disease (AD) and other neurodegenerative disorders. Polyunsaturated fatty acids (PUFA) metabolism impaired by cyclooxygenases (COX-1, COX-2), which are responsible for formation of several eicosanoids, and by lipoxygenases (LOXs) that catalyze the addition of oxygen to linolenic, arachidonic (AA), and docosahexaenoic acids (DHA) and other PUFA leading to formation of bioactive lipids, significantly affects the course of neurodegenerative diseases. Among several isoforms, 5-LOX and 12/15-LOX are especially important in neuroinflammation/neurodegeneration. These two LOXs are regulated by substrate concentration and availability, and by phosphorylation/dephosphorylation through protein kinases PKA, PKC and MAP-kinases, including ERK1/ERK2 and p38. The protein/protein interaction also is involved in the mechanism of 5-LOX regulation through FLAP protein and coactosin-like protein. Moreover, non-heme iron and calcium ions are potent regulators of LOXs. The enzyme activity significantly depends on the cell redox state and is differently regulated by various signaling pathways. 5-LOX and 12/15-LOX convert linolenic acid, AA, and DHA into several bioactive compounds e.g. hydroperoxyeicosatetraenoic acids (5-HPETE, 12S-HPETE, 15S-HPETE), which are reduced to corresponding HETE compounds. These enzymes synthesize several bioactive lipids, e.g. leucotrienes, lipoxins, hepoxilins and docosahexaenoids. 15-LOX is responsible for DHA metabolism into neuroprotectin D1 (NPD1) with significant antiapoptotic properties which is down-regulated in AD. In this review, the regulation and impact of 5-LOX and 12/15-LOX in the pathomechanism of AD is discussed. Moreover, we describe the role of several products of LOXs, which may have significant pro- or anti-inflammatory activity in AD, and the cytoprotective effects of LOX inhibitors.


Subject(s)
Alzheimer Disease/enzymology , Lipoxygenase/metabolism , Humans
19.
PLoS One ; 10(9): e0137193, 2015.
Article in English | MEDLINE | ID: mdl-26334640

ABSTRACT

Our study focused on the relationship between amyloid ß 1-42 (Aß), sphingosine kinases (SphKs) and mitochondrial sirtuins in regulating cell fate. SphK1 is a key enzyme involved in maintaining sphingolipid rheostat in the brain. Deregulation of the sphingolipid metabolism may play a crucial role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial function and mitochondrial deacetylases, i.e. sirtuins (Sirt3,-4,-5), are also important for cell viability. In this study, we evaluated the interaction between Aß1-42, SphKs and Sirts in cell survival/death, and we examined several compounds to indicate possible target(s) for a strategy protecting against cytotoxicity of Aß1-42. PC12 cells were subjected to Aß1-42 oligomers and SphK inhibitor SKI II for 24-96 h. Our data indicated that Aß1-42 enhanced SphK1 expression and activity after 24 h, but down-regulated them after 96 h and had no effect on Sphk2. Aß1-42 and SKI II induced free radical formation, disturbed the balance between pro- and anti-apoptotic proteins and evoked cell death. Simultaneously, up-regulation of anti-oxidative enzymes catalase and superoxide dismutase 2 was observed. Moreover, the total protein level of glycogen synthase kinase-3ß was decreased. Aß1-42 significantly increased the level of mitochondrial proteins: apoptosis-inducing factor AIF and Sirt3, -4, -5. By using several pharmacologically active compounds we showed that p53 protein plays a significant role at very early stages of Aß1-42 toxicity. However, during prolonged exposure to Aß1-42, the activation of caspases, MEK/ERK, and alterations in mitochondrial permeability transition pores were additional factors leading to cell death. Moreover, SphK product, sphingosine-1-phosphate (S1P), and Sirt activators and antioxidants, resveratrol and quercetin, significantly enhanced viability of cells subjected to Aß1-42. Our data indicated that p53 protein and inhibition of SphKs may be early key events responsible for cell death evoked by Aß1-42. We suggest that activation of S1P-dependent signalling and Sirts may offer a promising cytoprotective strategy.


Subject(s)
Amyloid beta-Peptides/toxicity , Mitochondria/metabolism , Peptide Fragments/toxicity , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sirtuins/metabolism , Animals , PC12 Cells , Rats
20.
PLoS One ; 9(4): e94259, 2014.
Article in English | MEDLINE | ID: mdl-24722055

ABSTRACT

α-Synuclein (ASN) plays an important role in pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. Novel and most interesting data showed elevated tauopathy in PD and suggested relationship between ASN and Tau protein. However, the mechanism of ASN-evoked Tau protein modification is not fully elucidated. In this study we investigated the role of extracellular ASN in Tau hyperphosphorylation in rat pheochromocytoma (PC12) cells and the involvement of glycogen synthase kinase-3ß (GSK-3ß) and cyclin-dependent kinase 5 (CDK5) in ASN-dependent Tau modification. Our results indicated that exogenously added ASN increases Tau phosphorylation at Ser396. Accordingly, the GSK-3ß inhibitor (SB-216763) prevented ASN-evoked Tau hyperphosphorylation, but the CDK5 inhibitor had no effect. Moreover, western blot analysis showed that ASN affected GSK-3ß via increasing of protein level and activation of this enzyme. GSK-3ß activity evaluated by its phosphorylation status assay showed that ASN significantly increased the phosphorylation of this enzyme at Tyr216 with parallel decrease in phosphorylation at Ser9, indicative of stimulation of GSK-3ß activity. Moreover, the effect of ASN on microtubule (MT) destabilization and cell death with simultaneous the involvement of GSK-3ß in these processes were analyzed. ASN treatment increased the amount of free tubulin and concomitantly reduced the amount of polymerized tubulin and SB-216763 suppressed these ASN-induced changes in tubulin, indicating that GSK-3ß is involved in ASN-evoked MT destabilization. ASN-induced apoptotic processes lead to decrease in PC12 cells viability and SB-216763 protected those cells against ASN-evoked cytotoxicity. Concluding, extracellular ASN is involved in GSK-3ß-dependent Tau hyperphosphorylation, which leads to microtubule destabilization. GSK-3ß inhibition may be an effective strategy for protecting against ASN-induced cytotoxicity.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Microtubules/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Animals , Apoptosis , Cytoskeleton/metabolism , Glycogen Synthase Kinase 3 beta , Indoles/chemistry , Maleimides/chemistry , PC12 Cells , Phosphorylation , Rats , Time Factors , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...