Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 13: 965098, 2022.
Article in English | MEDLINE | ID: mdl-36160990

ABSTRACT

The transition from vegetative growth to reproductive development is a critical developmental switch in flowering plants to ensure a successful life cycle. However, while the genes controlling flowering are well-known in model plants, they are less well-understood in crops. In this work, we generated potato lines both silenced and overexpressed for the expression of StBBX24, a clock-controlled gene encoding a B-box protein located in the cytosol and nuclear chromatin fraction. We revealed that Solanum tuberosum lines silenced for StBBX24 expression displayed much earlier flowering than wild-type plants. Conversely, plants overexpressing StBBX24 mostly did not produce flower buds other than wild-type plants. In addition, RT-qPCR analyses of transgenic silenced lines revealed substantial modifications in the expression of genes functioning in flowering. Furthermore, S. tuberosum lines silenced for StBBX24 expression displayed susceptibility to high salinity with a lower capacity of the antioxidant system and strongly decreased expression of genes encoding Na+ transporters that mediate salt tolerance, contrary to the plants with StBBX24 overexpression. Altogether, these data reveal that StBBX24 participates in potato flowering repression and is involved in salt stress response.

3.
PLoS One ; 12(5): e0177471, 2017.
Article in English | MEDLINE | ID: mdl-28552939

ABSTRACT

Plant B-box domain proteins (BBX) mediate many light-influenced developmental processes including seedling photomorphogenesis, seed germination, shade avoidance and photoperiodic regulation of flowering. Despite the wide range of potential functions, the current knowledge regarding BBX proteins in major crop plants is scarce. In this study, we identify and characterize the StBBX gene family in potato, which is composed of 30 members, with regard to structural properties and expression profiles under diurnal cycle, etiolation and de-etiolations. Based on domain organization and phylogenetic relationships, StBBX genes have been classified into five groups. Using real-time quantitative PCR, we found that expression of most of them oscillates following a 24-h rhythm; however, large differences in expression profiles were observed between the genes regarding amplitude and position of the maximal and minimal expression levels in the day/night cycle. On the basis of the time-of-day/time-of-night, we distinguished three expression groups specifically expressed during the light and two during the dark phase. In addition, we showed that the expression of several StBBX genes is under the control of the circadian clock and that some others are specifically associated with the etiolation and de-etiolation conditions. Thus, we concluded that StBBX proteins are likely key players involved in the complex diurnal and circadian networks regulating plant development as a function of light conditions and day duration.


Subject(s)
Circadian Rhythm , Etiolation , Genome, Plant , Plant Proteins/genetics , Solanum tuberosum/metabolism , Phylogeny , Plant Proteins/classification , Solanum tuberosum/physiology
4.
Plant Cell Environ ; 40(3): 424-440, 2017 03.
Article in English | MEDLINE | ID: mdl-27928822

ABSTRACT

ZPR1 proteins belong to the C4-type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif 'CAACAGCATC', named CIRC and present in the promoter of the clock-controlled double B-box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock-associated protein in plants necessary for the accurate rhythmic expression of specific circadian-regulated genes.


Subject(s)
Cell Nucleus/metabolism , Circadian Rhythm/radiation effects , DNA-Binding Proteins/metabolism , Light , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Solanum tuberosum/radiation effects , Abscisic Acid/pharmacology , Cell Nucleus/radiation effects , Circadian Rhythm/genetics , Environment , Gene Expression Regulation, Plant , Gene Silencing/drug effects , Nucleotide Motifs/genetics , Phylogeny , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Promoter Regions, Genetic , Protein Binding , Protein Domains , Protein Transport , Solanum tuberosum/genetics , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...