Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Prev Vet Med ; 120(3-4): 277-82, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25956134

ABSTRACT

Although diagnosis of anthrax can be made in the field with a peripheral blood smear, and in the laboratory with bacterial culture or molecular based tests, these tests require either considerable experience or specialised equipment. Here we report on the evaluation of the diagnostic sensitivity and specificity of a simple and rapid in-field diagnostic test for anthrax, the anthrax immunochromatographic test (AICT). The AICT detects the protective antigen (PA) component of the anthrax toxin present within the blood of an animal that has died from anthrax. The test provides a result in 15min and offers the advantage of avoiding the necessity for on-site necropsy and subsequent occupational risks and environmental contamination. The specificity of the test was determined by testing samples taken from 622 animals, not infected with Bacillus anthracis. Diagnostic sensitivity was estimated on samples taken from 58 animals, naturally infected with B. anthracis collected over a 10-year period. All samples used to estimate the diagnostic sensitivity and specificity of the AICT were also tested using the gold standard of bacterial culture. The diagnostic specificity of the test was estimated to be 100% (99.4-100%; 95% CI) and the diagnostic sensitivity was estimated to be 93.1% (83.3-98.1%; 95% CI) (Clopper-Pearson method). Four samples produced false negative AICT results. These were among 9 samples, all of which tested positive for B. anthracis by culture, where there was a time delay between collection and testing of >48h and/or the samples were collected from animals that were >48h post-mortem. A statistically significant difference (P<0.001; Fishers exact test) was found between the ability of the AICT to detect PA in samples from culture positive animals <48h post-mortem, 49 of 49, Se=100% (92.8-100%; 95% CI) compared with samples tested >48h post-mortem 5 of 9 Se=56% (21-86.3%; 95% CI) (Clopper-Pearson method). Based upon these results a post hoc cut-off for use of the AICT of 48h post-mortem was applied, Se=100% (92.8-100%; 95% CI) and Sp=100% (99.4-100%; 95% CI). The high diagnostic sensitivity and specificity and the simplicity of the AICT enables it to be used for active surveillance in areas with a history of anthrax, or used as a preliminary tool in investigating sudden, unexplained death in cattle.


Subject(s)
Anthrax/veterinary , Antigens, Bacterial/blood , Cattle Diseases/diagnosis , Diagnostic Tests, Routine/veterinary , Animals , Anthrax/diagnosis , Anthrax/microbiology , Australia , Cattle , Cattle Diseases/microbiology , Chromatography, Affinity/veterinary , Diagnostic Tests, Routine/standards , Sensitivity and Specificity
2.
PLoS One ; 7(3): e32801, 2012.
Article in English | MEDLINE | ID: mdl-22412927

ABSTRACT

Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.


Subject(s)
Bacillus anthracis/immunology , Single-Chain Antibodies/immunology , Amino Acid Sequence , Anthrax/diagnosis , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antibodies, Bacterial/metabolism , Antibody Affinity/immunology , Antibody Specificity/immunology , Humans , Immunoassay , Kinetics , Molecular Sequence Data , Protein Stability , Sequence Alignment , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Spores, Bacterial/immunology , Temperature
3.
Plant Dis ; 92(10): 1387-1393, 2008 Oct.
Article in English | MEDLINE | ID: mdl-30769566

ABSTRACT

An indirect immunofluorescence spore assay (IFSA) was developed to detect urediniospores of Phakopsora pachyrhizi, utilizing rabbit polyclonal antisera produced in response to intact nongerminated (SBR1A) or germinated (SBR2) urediniospores of P. pachyrhizi. Both antisera were specific to Phakopsora spp. and did not react with other common soybean pathogens or healthy soybean leaf tissue in enzyme-linked immunosorbent assay (ELISA). SBR1A and SBR2 bound to P. pachyrhizi and P. meibomiae urediniospores were detected with goat anti-rabbit Alexa Fluor 488-tagged antiserum using a Leica DM IRB epifluorescent microscope with an I3 blue filter (excitation 450 to 490 nm, emission 515 nm). The assay was performed on standard glass microscope slides; double-sided tape was superior to a thin coating of petroleum jelly both in retaining spores and in immunofluorescence. The IFSA was used to confirm the identity of P. pachyrhizi urediniospores captured on glass slides from passive air samplers from Georgia, Kentucky, and Ohio during 2006.

SELECTION OF CITATIONS
SEARCH DETAIL