Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 78(14): 6911-34, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23786303

ABSTRACT

Glycan arrays have been established as the premier technical platform for assessing the specificity of carbohydrate binding proteins, an important step in functional glycomics research. Access to large libraries of well-characterized oligosaccharides remains a major bottleneck of glycan array research, and this is particularly true for glycosaminoglycans (GAGs), a class of linear sulfated polysaccharides which are present on most animal cells. Solid-supported synthesis is a potentially powerful tool for the accelerated synthesis of relevant GAG libraries with variations in glycan sequence and sulfation pattern. We have evaluated a series of iduronic acid and idose donors, including a couple of novel n-pentenyl orthoester donors in the sequential assembly of heparan sulfate precursors from monosaccharide building blocks in solution and on a polystyrene resin. The systematic study of donor and acceptor performance up to the trisaccharide stage in solution and on the solid support have resulted in a general strategy for the solid-phase assembly of this important class of glycans.


Subject(s)
Heparitin Sulfate/chemical synthesis , Hexoses/chemistry , Iduronic Acid/chemistry , Glycosylation , Heparitin Sulfate/chemistry , Molecular Structure
2.
Chem Commun (Camb) ; 47(8): 2390-2, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21170430

ABSTRACT

A novel ester type linker which upon cleavage releases the glycans as carbamate protected aminoglycosides was successfully employed in the sequential assembly of L-idose and azido glucose monosaccharide building blocks to heparan sulfate precursors.


Subject(s)
Heparitin Sulfate/chemistry , Monosaccharides/chemistry , Carbamates/chemistry , Heparitin Sulfate/chemical synthesis
3.
J Am Chem Soc ; 130(51): 17494-501, 2008 Dec 24.
Article in English | MEDLINE | ID: mdl-19053462

ABSTRACT

Several simple mono- and disaccharides have been assessed for their ability to inhibit ice recrystallization. Two carbohydrates were found to be effective recrystallization inhibitors. D-galactose (1) was the best monosaccharide and D-melibiose (5) was the most active disaccharide. The ability of each carbohydrate to inhibit ice growth was correlated to its respective hydration number reported in the literature. A hydration number reflects the number of tightly bound water molecules to the carbohydrate and is a function of carbohydrate stereochemistry. It was discovered that using the absolute hydration number of a carbohydrate does not allow one to accurately predict its ability to inhibit ice recrystallization. Consequently, we have defined a hydration index in which the hydration number is divided by the molar volume of the carbohydrate. This new parameter not only takes into account the number of water molecules tightly bound to a carbohydrate but also the size or volume of a particular solute and ultimately the concentration of hydrated water molecules. The hydration index of both mono- and disaccharides correlates well with experimentally measured RI activity. C-Linked derivatives of the monosaccharides appear to have RI activity comparable to that of their O-linked saccharides but a more thorough investigation is required. The relationship between carbohydrate concentration and RI activity was shown to be noncolligative and a 0.022 M solution of D-galactose (1) and C-linked galactose derivative (10) inhibited recrystallization as well as a 3% DMSO solution. The carbohydrates examined in this study did not possess any thermal hysteresis activity (selective depression of freezing point relative to melting point) or dynamic ice shaping. As such, we propose that they are inhibiting recrystallization at the interface between bulk water and the quasi liquid layer (a semiordered interface between ice and bulk water) by disrupting the preordering of water.


Subject(s)
Ice , Water/chemistry , Carbohydrates/chemistry , Chemistry/methods , Crystallization , Dimethyl Sulfoxide/chemistry , Disaccharides/chemistry , Freezing , Galactose/chemistry , Glycosides/chemistry , Hot Temperature , Models, Chemical , Models, Statistical , Monosaccharides/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...