Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
JBMR Plus ; 8(6): ziae053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715931

ABSTRACT

Diabetes predisposes to spine degenerative diseases often requiring surgical intervention. However, the statistics on the prevalence of spinal fusion success and clinical indications leading to the revision surgery in diabetes are conflicting. The purpose of the presented retrospective observational study was to determine the link between diabetes and lumbar spinal fusion complications using a database of patients (n = 552, 45% male, age 54 ± 13.7 years) residing in the same community and receiving care at the same health care facility. Outcome measures included clinical indications and calculated risk ratio (RR) for revision surgery in diabetes. Paravertebral tissue recovered from a non-union site of diabetic and nondiabetic patients was analyzed for microstructure of newly formed bone. Diabetes increased the RR for revision surgery due to non-union complications (2.80; 95% CI, 1.12-7.02) and degenerative processes in adjacent spine segments (2.26; 95% CI, 1.45-3.53). In diabetes, a risk of revision surgery exceeded the RR for primary spinal fusion surgery by 44% (2.36 [95% CI, 1.58-3.52] vs 1.64 [95% CI, 1.16-2.31]), which was already 2-fold higher than diabetes prevalence in the studied community. Micro-CT of bony fragments found in the paravertebral tissue harvested during revision surgery revealed structural differences suggesting that newly formed bone in diabetic patients may be of compromised quality, as compared with that in nondiabetic patients. In conclusion, diabetes significantly increases the risk of unsuccessful lumbar spine fusion outcome requiring revision surgery. Diabetes predisposes to the degeneration of adjacent spine segments and pseudoarthrosis at the fusion sites, and affects the structure of newly formed bone needed to stabilize fusion.

2.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38645043

ABSTRACT

Objective: The skeleton is one of the largest organs in the body, wherein metabolism is integrated with systemic energy metabolism. However, the bioenergetic programming of osteocytes, the most abundant bone cells coordinating bone metabolism, is not well defined. Here, using a mouse model with partial penetration of an osteocyte-specific PPARG deletion, we demonstrate that PPARG controls osteocyte bioenergetics and their contribution to systemic energy metabolism independently of circulating sclerostin levels. Methods: In vivo and in vitro models of osteocyte-specific PPARG deletion, i.e. Dmp 1 Cre Pparγ flfl male and female mice (γOT KO ) and MLO-Y4 osteocyte-like cells with either siRNA-silenced or CRISPR/Cas9-edited Pparγ . As applicable, the models were analyzed for levels of energy metabolism, glucose metabolism, and metabolic profile of extramedullary adipose tissue, as well as the osteocyte transcriptome, mitochondrial function, bioenergetics, insulin signaling, and oxidative stress. Results: Circulating sclerostin levels of γOT KO male and female mice were not different from control mice. Male γOT KO mice exhibited a high energy phenotype characterized by increased respiration, heat production, locomotion and food intake. This high energy phenotype in males did not correlate with "beiging" of peripheral adipose depots. However, both sexes showed a trend for reduced fat mass and apparent insulin resistance without changes in glucose tolerance, which correlated with decreased osteocytic responsiveness to insulin measured by AKT activation. The transcriptome of osteocytes isolated from γOT KO males suggested profound changes in cellular metabolism, fuel transport and usage, mitochondria dysfunction, insulin signaling and increased oxidative stress. In MLO-Y4 osteocytes, PPARG deficiency correlated with highly active mitochondria, increased ATP production, shifts in fuel utilization, and accumulation of reactive oxygen species (ROS). Conclusions: PPARG in male osteocytes acts as a molecular break on mitochondrial function, and protection against oxidative stress and ROS accumulation. It also regulates osteocyte insulin signaling and fuel usage to produce energy. These data provide insight into the connection between osteocyte bioenergetics and their sex-specific contribution to the balance of systemic energy metabolism. These findings support the concept that the skeleton controls systemic energy expenditure via osteocyte metabolism. Highlights: Osteocytes function as a body energostat via their bioenergeticsPPARG protein acts as a "molecular break" of osteocyte mitochondrial activityPPARG deficiency activates TCA cycle, oxidative stress and ROS accumulationPPARG controls osteocyte insulin signaling and fuel utilization.

3.
J Clin Invest ; 134(11)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687617

ABSTRACT

One critical mechanism through which prostate cancer (PCa) adapts to treatments targeting androgen receptor (AR) signaling is the emergence of ligand-binding domain-truncated and constitutively active AR splice variants, particularly AR-V7. While AR-V7 has been intensively studied, its ability to activate distinct biological functions compared with the full-length AR (AR-FL), and its role in regulating the metastatic progression of castration-resistant PCa (CRPC), remain unclear. Our study found that, under castrated conditions, AR-V7 strongly induced osteoblastic bone lesions, a response not observed with AR-FL overexpression. Through combined ChIP-seq, ATAC-seq, and RNA-seq analyses, we demonstrated that AR-V7 uniquely accesses the androgen-responsive elements in compact chromatin regions, activating a distinct transcription program. This program was highly enriched for genes involved in epithelial-mesenchymal transition and metastasis. Notably, we discovered that SOX9, a critical metastasis driver gene, was a direct target and downstream effector of AR-V7. Its protein expression was dramatically upregulated in AR-V7-induced bone lesions. Moreover, we found that Ser81 phosphorylation enhanced AR-V7's pro-metastasis function by selectively altering its specific transcription program. Blocking this phosphorylation with CDK9 inhibitors impaired the AR-V7-mediated metastasis program. Overall, our study has provided molecular insights into the role of AR splice variants in driving the metastatic progression of CRPC.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Animals , Humans , Male , Mice , Alternative Splicing , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Neoplasm Metastasis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcription, Genetic
4.
Front Endocrinol (Lausanne) ; 14: 1145467, 2023.
Article in English | MEDLINE | ID: mdl-37181042

ABSTRACT

Introduction: The view that bone and energy metabolism are integrated by common regulatory mechanisms is broadly accepted and supported by multiple strands of evidence. This includes the well-characterized role of the PPARγ nuclear receptor, which is a common denominator in energy metabolism and bone metabolism. Little is known, however, about the role of PPARα nuclear receptor, a major regulator of lipid metabolism in other organs, in bone. Methods: A side-by-side comparative study of 5-15 mo old mice with global PPARα deficiency (αKO) and mice with osteocyte-specific PPARα deficiency (αOTKO) in order to parse out the various activities of PPARα in the skeleton that are of local and systemic significance. This study included transcriptome analysis of PPARα-deficient osteocytes, and analyses of bone mass and bone microarchitecture, systemic energy metabolism with indirect calorimetry, and differentiation potential of hematopoietic and mesenchymal bone cell progenitors. These analyses were paired with in vitro studies of either intact or silenced for PPARα MLO-A5 cells to determine PPARα role in osteocyte bioenergetics. Results: In osteocytes, PPARα controls large number of transcripts coding for signaling and secreted proteins which may regulate bone microenvironment and peripheral fat metabolism. In addition, PPARα in osteocytes controls their bioenergetics and mitochondrial response to stress, which constitutes up to 40% of total PPARα contribution to the global energy metabolism. Similarly to αKO mice, the metabolic phenotype of αOTKO mice (both males and females) is age-dependent. In younger mice, osteocyte metabolism contributes positively to global energetics, however, with aging the high-energy phenotype reverts to a low-energy phenotype and obesity develops, suggesting a longitudinal negative effect of impaired lipid metabolism and mitochondrial dysfunction in osteocytes deficient in PPARα. However, bone phenotype was not affected in αOTKO mice except in the form of an increased volume of marrow adipose tissue in males. In contrast, global PPARα deficiency in αKO mice led to enlarged bone diameter with a proportional increase in number of trabeculae and enlarged marrow cavities; it also altered differentiation of hematopoietic and mesenchymal marrow cells toward osteoclast, osteoblast and adipocyte lineages, respectively. Discussion: PPARα role in bone is multileveled and complex. In osteocytes, PPARα controls the bioenergetics of these cells, which significantly contributes to systemic energy metabolism and their endocrine/paracrine function in controlling marrow adiposity and peripheral fat metabolism.


Subject(s)
Bone and Bones , Energy Metabolism , Osteocytes , PPAR alpha , Osteocytes/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Energy Metabolism/genetics , Animals , Mice , Cells, Cultured , Male , Female , Signal Transduction , Mice, Knockout , Hematopoietic Stem Cells/cytology , Cell Differentiation/genetics , Age Factors , Gene Expression Profiling
5.
Physiol Genomics ; 53(12): 518-533, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34714176

ABSTRACT

Integration of microbiota in a host begins at birth and progresses during adolescence, forming a multidirectional system of physiological interactions. Here, we present an instantaneous effect of natural, bacterial gut colonization on the acceleration of longitudinal and radial bone growth in germ-free born, 7-wk-old male rats. Changes in bone mass and structure were analyzed after 10 days following the onset of colonization through cohousing with conventional rats and revealed unprecedented acceleration of bone accrual in cortical and trabecular compartments, increased bone tissue mineral density, improved proliferation and hypertrophy of growth plate chondrocytes, bone lengthening, and preferential deposition of periosteal bone in the tibia diaphysis. In addition, the number of small in size adipocytes increased, whereas the number of megakaryocytes decreased, in the bone marrow of conventionalized germ-free rats indicating that not only bone mass but also bone marrow environment is under control of gut microbiota signaling. The changes in bone status paralleled with a positive shift in microbiota composition toward short-chain fatty acids (SCFA)-producing microbes and a considerable increase in cecal SCFA concentrations, specifically butyrate. Furthermore, reconstitution of the host holobiont increased hepatic expression of IGF-1 and its circulating levels. Elevated serum levels of 25-hydroxy vitamin D and alkaline phosphatase pointed toward an active process of bone formation. The acute stimulatory effect on bone growth occurred independently of body mass increase. Overall, the presented model of conventionalized germ-free rats could be used to study microbiota-based therapeutics for combatting dysbiosis-related bone disorders.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Bone Development/physiology , Bone Marrow Cells/metabolism , Gastrointestinal Microbiome/genetics , Germ-Free Life , Host Microbial Interactions/genetics , Osteogenesis/physiology , Adipocytes/metabolism , Animals , Bone Density/physiology , Cell Proliferation/physiology , Chondrocytes/metabolism , Coprophagia , Dysbiosis , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Feces/microbiology , Male , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34408018

ABSTRACT

Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1ß. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1ß levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.


Subject(s)
14-3-3 Proteins/metabolism , 14-3-3 Proteins/pharmacology , Arthritis/chemically induced , Inflammation/drug therapy , 14-3-3 Proteins/genetics , 14-3-3 Proteins/immunology , Animals , Antibodies , Arthritis/genetics , Arthritis/metabolism , Bone Density , Bone Diseases/metabolism , Bone Diseases/prevention & control , Collagen/metabolism , Collagen/toxicity , Female , Freund's Adjuvant/pharmacology , Gene Deletion , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Immunization, Passive , Male , Mesenchymal Stem Cells/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Terpenes/toxicity
7.
Bone ; 147: 115913, 2021 06.
Article in English | MEDLINE | ID: mdl-33722775

ABSTRACT

The peroxisome proliferator activated receptor gamma (PPARG) nuclear receptor regulates energy metabolism and insulin sensitivity. In this study, we present novel evidence for an essential role of PPARG in the regulation of osteocyte function, and support for the emerging concept of the conjunction between regulation of energy metabolism and bone mass. We report that PPARG is essential for sclerostin production, a recently approved target to treat osteoporosis. Our mouse model of osteocyte-specific PPARG deletion (Dmp1CrePparγflfl or γOTKO) is characterized with increased bone mass and reduced bone marrow adiposity, which is consistent with upregulation of WNT signaling and increased bone forming activity of endosteal osteoblasts. An analysis of osteocytes derived from γOTKO and control mice showed an excellent correlation between PPARG and SOST/sclerostin at the transcript and protein levels. The 8 kb sequence upstream of Sost gene transcription start site possesses multiple PPARG binding elements (PPREs) with at least two of them binding PPARG with dynamics reflecting its activation with full agonist rosiglitazone and correlating with increased levels of Sost transcript and sclerostin protein expression (Pearson's r = 0.991, p = 0.001). Older γOTKO female mice are largely protected from TZD-induced bone loss providing proof of concept that PPARG in osteocytes can be pharmacologically targeted. These findings demonstrate that transcriptional activities of PPARG are essential for sclerostin expression in osteocytes and support consideration of targeting PPARG activities with selective modulators to treat osteoporosis.


Subject(s)
Osteocytes , PPAR gamma , Adaptor Proteins, Signal Transducing/metabolism , Adiposity , Animals , Bone Marrow/metabolism , Female , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins , Mice , Osteocytes/metabolism , PPAR gamma/genetics
8.
JBMR Plus ; 4(9): e10392, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995694

ABSTRACT

Bone and energy metabolism are integrated by common regulatory mechanisms. Carboxypeptidase E (CPE), also known as obesity susceptibility protein or neurotrophic factor-α1, is recognized for its function in processing prohormones, including proinsulin and pro-opiomelanocortin polypeptide. Independent of its enzymatic activity, CPE may also act as a secreted factor with divergent roles in neuroprotection and cancer growth; however, its role in the regulation of bone mass and skeletal cell differentiation is unknown. Male mice with global deficiency in CPE are characterized with profound visceral obesity, low bone mass in both appendicular and axial skeleton, and high volume of marrow fat. Interestingly, although metabolic deficit of CPE KO mice develops early in life, bone deficit develops in older age, suggesting that CPE bone-specific activities differ from its enzymatic activities. Indeed, mutated CPE knockin (mCPE KI) mice ectopically expressing CPE-E342Q, a mutated protein lacking enzymatic activity, develop the same obese phenotype and accumulate the same volume of marrow fat as CPE KO mice, but their bone mass is normal. In addition, differentiation of marrow hematopoietic cells toward tartrate-resistant acid phosphatase-positive multinucleated osteoclasts is highly increased in CPE KO mice, but normal in mCPE KI mice. Moreover, in murine skeletal stem cells, nonenzymatic trophic CPE has activated ERK signaling, increased cell proliferation and increased mitochondrial activity. Treatment of preosteoblastic cells with intact or mutated recombinant CPE led to a transient accumulation of small lipid droplets, increased oxidative phosphorylation, and increased cellular dependence on fatty acids as fuel for energy production. In human marrow aspirates, CPE expression increases up to 30-fold in osteogenic conditions. These findings suggest that nonenzymatic and trophic activities of CPE regulate bone mass, whereas marrow adiposity is controlled by CPE enzymatic activity. Thus, CPE can be positioned as a factor regulating simultaneously bone and energy metabolism through a combination of shared and distinct mechanisms. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

9.
Article in English | MEDLINE | ID: mdl-28824548

ABSTRACT

Marrow adipose tissue (MAT) is unique with respect to origin, metabolism, and function. MAT is characterized with high heterogeneity which correlates with skeletal location and bone metabolism. This fat depot is also highly sensitive to various hormonal, environmental, and pharmacologic cues to which it responds with changes in volume and/or metabolic phenotype. We have demonstrated previously that MAT has characteristics of both white (WAT) and brown (BAT)-like or beige adipose tissue, and that beige phenotype is attenuated with aging and in diabetes. Here, we extended our analysis by comparing MAT phenotype in different locations within a tibia bone of mature C57BL/6 mice and with respect to the presence of sex steroids in males and females. We report that MAT juxtaposed to trabecular bone of proximal tibia (pMAT) is characterized by elevated expression of beige fat markers including Ucp1, HoxC9, Prdm16, Tbx1, and Dio2, when compared with MAT located in distal tibia (dMAT). There is also a difference in tissue organization with adipocytes in proximal tibia being dispersed between trabeculae, while adipocytes in distal tibia being densely packed. Higher trabecular bone mass (BV/TV) in males correlates with lower pMAT volume and higher expression of beige markers in the same location, when compared with females. However, there is no sexual divergence in the volume and transcriptional profile of dMAT. A removal of ovaries in females resulted in decreased cortical bone mass and increased volume of both pMAT and dMAT, as well as volume of gonadal WAT (gWAT). Increase in pMAT volume was associated with marked increase in Fabp4 and Adiponectin expression and relative decrease in beige fat gene markers. A removal of testes in males resulted in cortical and trabecular bone loss and the tendency to increased volume of both pMAT and dMAT, despite a loss of gWAT. Orchiectomy did not affect the expression of white and beige adipocyte gene markers. In conclusion, expression profile of beige adipocyte gene markers correlates with skeletal location of active bone remodeling and higher BV/TV, however bone loss resulted from sex steroid deficiency is not proportional to MAT expansion at the same skeletal location.

10.
Physiol Genomics ; 48(6): 409-19, 2016 06.
Article in English | MEDLINE | ID: mdl-27113531

ABSTRACT

Through linkage analysis of the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR), a blood pressure (BP) quantitative trait locus (QTL) was previously located on rat chromosome 9. Subsequent substitution mapping studies of this QTL revealed multiple BP QTLs within the originally identified logarithm of odds plot by linkage analysis. The focus of this study was on a 14.39 Mb region, the distal portion of which remained unmapped in our previous studies. High-resolution substitution mapping for a BP QTL in the setting of a high-salt diet indicated that an SHR-derived congenic segment of 787.9 kb containing the gene secreted phosphoprotein-2 (Spp2) lowered BP and urinary protein excretion. A nonsynonymous G/T polymorphism in the Spp2 gene was detected between the S and S.SHR congenic rats. A survey of 45 strains showed that the T allele was rare, being detected only in some substrains of SHR and WKY. Protein modeling prediction through SWISSPROT indicated that the predicted protein product of this variant was significantly altered. Importantly, in addition to improved cardiovascular and renal function, high salt-fed congenic animals carrying the SHR T variant of Spp2 had significantly lower bone mass and altered bone microarchitecture. Total bone volume and volume of trabecular bone, cortical thickness, and degree of mineralization of cortical bone were all significantly reduced in congenic rats. Our study points to opposing effects of a congenic segment containing the prioritized candidate gene Spp2 on BP and bone mass.


Subject(s)
Blood Pressure/genetics , Bone and Bones/metabolism , Chromosomes, Human, Pair 9/genetics , Phosphoproteins/genetics , Quantitative Trait Loci/genetics , Alleles , Animals , Animals, Congenic/genetics , Chromosome Mapping/methods , Genetic Linkage/genetics , Humans , Hypertension/genetics , Male , Rats , Rats, Inbred Dahl , Rats, Inbred SHR/genetics , Rats, Inbred WKY , Sodium Chloride, Dietary/administration & dosage
11.
PLoS One ; 9(5): e96323, 2014.
Article in English | MEDLINE | ID: mdl-24810249

ABSTRACT

Peroxisome proliferator activated receptor gamma (PPARγ) controls both glucose metabolism and an allocation of marrow mesenchymal stem cells (MSCs) toward osteoblast and adipocyte lineages. Its activity is determined by interaction with a ligand which directs posttranscriptional modifications of PPARγ protein including dephosphorylation of Ser112 and Ser273, which results in acquiring of pro-adipocytic and insulin-sensitizing activities, respectively. PPARγ full agonist TZD rosiglitazone (ROSI) decreases phosphorylation of both Ser112 and Ser273 and its prolonged use causes bone loss in part due to diversion of MSCs differentiation from osteoblastic toward adipocytic lineage. Telmisartan (TEL), an anti-hypertensive drug from the class of angiotensin receptor blockers, also acts as a partial PPARγ agonist with insulin-sensitizing and a weak pro-adipocytic activity. TEL decreased S273pPPARγ and did not affect S112pPPARγ levels in a model of marrow MSC differentiation, U-33/γ2 cells. In contrast to ROSI, TEL did not affect osteoblast phenotype and actively blocked ROSI-induced anti-osteoblastic activity and dephosphorylation of S112pPPARγ. The effect of TEL on bone was tested side-by-side with ROSI. In contrast to ROSI, TEL administration did not affect bone mass and bone biomechanical properties measured by micro-indentation method and did not induce fat accumulation in bone, and it partially protected from ROSI-induced bone loss. In addition, TEL induced "browning" of epididymal white adipose tissue marked by increased expression of UCP1, FoxC2, Wnt10b and IGFBP2 and increased overall energy expenditure. These studies point to the complexity of mechanisms by which PPARγ acquires anti-osteoblastic and pro-adipocytic activities and suggest an importance of Ser112 phosphorylation status as being a part of the mechanism regulating this process. These studies showed that TEL acts as a full PPARγ agonist for insulin-sensitizing activity and as a partial agonist/partial antagonist for pro-adipocytic and anti-osteoblastic activities. They also suggest a relationship between PPARγ fat "browning" activity and a lack of anti-osteoblastic activity.


Subject(s)
Benzimidazoles/pharmacology , Benzoates/pharmacology , Bone and Bones/drug effects , Osteoblasts/drug effects , Osteogenesis/drug effects , PPAR gamma/metabolism , Animals , Antihypertensive Agents/pharmacology , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Line , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , PPAR gamma/agonists , Phosphorylation/drug effects , Signal Transduction/drug effects , Telmisartan
12.
Endocrinology ; 154(8): 2687-701, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23696565

ABSTRACT

It is known that insulin resistance and type 2 diabetes mellitus are associated with increased fractures and that brown adipose tissue (BAT) counteracts many if not all of the symptoms associated with type 2 diabetes. By the use of FoxC2(AD)(+/Tg) mice, a well-established model for induction of BAT, or beige fat, we present data extending the beneficial action of beige fat to also include a positive effect on bone. FoxC2(AD)(+/Tg) mice are lean and insulin-sensitive and have high bone mass due to increased bone formation associated with high bone turnover. Inducible BAT is linked to activation of endosteal osteoblasts whereas osteocytes have decreased expression of the Sost transcript encoding sclerostin and elevated expression of Rankl. Conditioned media (CM) collected from forkhead box c2 (FOXC2)-induced beige adipocytes activated the osteoblast phenotype and increased levels of phospho-AKT and ß-catenin in recipient cells. In osteocytes, the same media decreased Sost expression. Immunodepletion of CM with antibodies against wingless related MMTV integration site 10b (WNT10b) and insulin-like growth factor binding protein 2 (IGFBP2) resulted in the loss of pro-osteoblastic activity, and the loss of increase in the levels of phospho-AKT and ß-catenin. Conversely, CM derived from cells overexpressing IGFBP2 or WNT10b restored osteoblastic activity in recipient cells. In conclusion, beige fat secretes endocrine/paracrine activity that is beneficial for the skeleton.


Subject(s)
Adipose Tissue, Brown/metabolism , Bone and Bones/metabolism , Osteoblasts/metabolism , Osteocytes/metabolism , Adaptor Proteins, Signal Transducing , Adipocytes/metabolism , Anabolic Agents/metabolism , Animals , Bone and Bones/cytology , Culture Media, Conditioned/pharmacology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression , Glycoproteins/genetics , Glycoproteins/metabolism , Immunohistochemistry , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor Binding Protein 2/metabolism , Intercellular Signaling Peptides and Proteins , Mice , Mice, Transgenic , Osteoblasts/drug effects , Osteocytes/drug effects , Phosphorylation , RANK Ligand/genetics , RANK Ligand/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
13.
PLoS One ; 7(12): e51746, 2012.
Article in English | MEDLINE | ID: mdl-23272157

ABSTRACT

Lineage allocation of the marrow mesenchymal stem cells (MSCs) to osteoblasts and adipocytes is dependent on both Wnt signaling and PPARγ2 activity. Activation of PPARγ2, an essential regulator of energy metabolism and insulin sensitivity, stimulates adipocyte and suppresses osteoblast differentiation and bone formation, and correlates with decreased bone mass and increased fracture rate. In contrast, activation of Wnt signaling promotes osteoblast differentiation, augments bone accrual and reduces total body fat. This study examined the cross-talk between PPARγ2 and ß-catenin, a key mediator of canonical Wnt signaling, on MSC lineage determination. Rosiglitazone-activated PPARγ2 induced rapid proteolytic degradation of ß-catenin, which was prevented by either inhibiting glycogen synthase kinase 3 beta (GSK3ß) activity, or blocking pro-adipocytic activity of PPARγ2 using selective antagonist GW9662 or mutation within PPARγ2 protein. Stabilization of ß-catenin suppressed PPARγ2 pro-adipocytic but not anti-osteoblastic activity. Moreover, ß-catenin stabilization decreased PPARγ2-mediated insulin signaling as measured by insulin receptor and FoxO1 gene expression, and protein levels of phosphorylated Akt (pAkt). Cellular knockdown of ß-catenin with siRNA increased expression of adipocyte but did not affect osteoblast gene markers. Interestingly, the expression of Wnt10b was suppressed by anti-osteoblastic, but not by pro-adipocytic activity of PPARγ2. Moreover, ß-catenin stabilization in the presence of activated PPARγ2 did not restore Wnt10b expression indicating a dominant role of PPARγ2 in negative regulation of pro-osteoblastic activity of Wnt signaling. In conclusion, ß-catenin and PPARγ2 are in cross-talk which results in sequestration of pro-adipocytic and insulin sensitizing activity. The anti-osteoblastic activity of PPARγ2 is independent of this interaction.


Subject(s)
Adipocytes/metabolism , Insulin/metabolism , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , PPAR gamma/metabolism , beta Catenin/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Anilides/pharmacology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Line , Gene Expression Regulation , Gene Silencing , Lithium Chloride/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice , Mutation , Osteoblasts/cytology , Osteoblasts/drug effects , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Protein Stability/drug effects , Proteolysis/drug effects , RNA Interference , Rosiglitazone , Signal Transduction , Thiazolidinediones/pharmacology
14.
J Cell Biochem ; 106(2): 232-46, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19115254

ABSTRACT

Rosiglitazone (Rosi), a member of the thiazolidinedione class of drugs used to treat type 2 diabetes, activates the adipocyte-specific transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma). This activation causes bone loss in animals and humans, at least in part due to suppression of osteoblast differentiation from marrow mesenchymal stem cells (MSC). In order to identify mechanisms by which PPARgamma2 suppresses osteoblastogenesis and promotes adipogenesis in MSC, we have analyzed the PPARgamma2 transcriptome in response to Rosi. A total of 4,252 transcriptional changes resulted when Rosi (1 microM) was applied to the U-33 marrow stromal cell line stably transfected with PPARgamma2 (U-33/gamma2) as compared to non-induced U-33/gamma2 cells. Differences between U-33/gamma2 and U-33 cells stably transfected with empty vector (U-33/c) comprised 7,928 transcriptional changes, independent of Rosi. Cell type-, time- and treatment-specific gene clustering uncovered distinct patterns of PPARgamma2 transcriptional control of MSC lineage commitment. The earliest changes accompanying Rosi activation of PPARgamma2 included effects on Wnt, TGFbeta/BMP and G-protein signaling activities, as well as sustained induction of adipocyte-specific gene expression and lipid metabolism. While suppression of osteoblast phenotype is initiated by a diminished expression of osteoblast-specific signaling pathways, induction of the adipocyte phenotype is initiated by adipocyte-specific transcriptional regulators. This indicates that distinct mechanisms govern the repression of osteogenesis and the stimulation of adipogenesis. The co-expression patterns found here indicate that PPARgamma2 has a dominant role in controlling osteoblast differentiation and suggests numerous gene-gene interactions that could lead to the identification of a "master" regulatory scheme directing this process.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , PPAR gamma/metabolism , Animals , Biomarkers , Bone Marrow Cells/metabolism , Cell Line , Gene Expression Regulation , Mice , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Signal Transduction
15.
Toxicol Appl Pharmacol ; 194(3): 296-308, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14761685

ABSTRACT

The lipid peroxidation product 4-hydroxynon-2-enal (4-HNE) is a strong electrophile that forms covalent adducts with proteins and, to a lesser extent, nucleic acids and phospholipids. The generation of 4-HNE appears to be an inevitable consequence of aerobic metabolism. The metabolism of 4-HNE is mainly, although not entirely, conjugative, and proceeds via Michael addition of glutathione to the double bond of 4-HNE. This reaction is catalyzed by specialized glutathione S-transferases (GSTs) exemplified by the murine mGSTA4-4. To study the (patho)physiological effects of 4-HNE in an intact organism, we disrupted the mGsta4 gene in the mouse. The resulting mGsta4 null mouse expressed no mGsta4 mRNA and no corresponding protein, had a reduced ability to conjugate 4-HNE, and had an increased steady-state level of this aldehyde in tissues. The residual conjugating activity for 4-HNE (23-64% depending on the tissue) is probably attributable to isoforms of glutathione S-transferases which have low catalytic efficiency for 4-HNE but are more abundant than mGSTA4-4, or are upregulated upon mGsta4 gene disruption. Mice homozygous for the disrupted mGsta4 allele were viable and appeared normal except for lower litter size, higher fat content in bones, and greater susceptibility to bacterial infection. The null mice had a significantly lower survival time than wild-type controls when chronically treated with relatively low doses of paraquat, a finding consistent with a role of mGSTA4-4 in the defense against oxidative stress. The mouse model should be useful for the study of degenerative conditions in which 4-HNE is postulated to be a contributing factor.


Subject(s)
Aldehydes/metabolism , Glutathione Transferase/physiology , Adipose Tissue/metabolism , Alleles , Animals , Blotting, Southern , Body Composition/genetics , Bone Density/genetics , DNA/genetics , Gene Library , Genetic Vectors , Glutathione Transferase/genetics , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Oxidative Stress/genetics , Phenotype , Plasmids/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis
16.
Arch Biochem Biophys ; 399(1): 37-48, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11883901

ABSTRACT

We have demonstrated the subcellular localization of the human UDP-glucuronosyltransferases (UGTs), UGT2B7 and UGT1A6, in endoplasmic reticulum (ER) and nuclear membrane from human hepatocytes and cell lines, by in situ immunostaining and Western blot. Double immunostaining for UGT2B7 and calnexin, an ER resident protein, showed that UGT2B7 was equally present in ER and nuclear membrane whereas calnexin was present almost exclusively in ER. Immunogold labeling of HK293 cells expressing UGT2B7 established the presence of UGT2B7 in both nuclear membranes. Enzymatic assays with UGT2B7 substrates confirmed the presence of functional UGT2B7 protein in ER, whole nuclei, and both outer and inner nuclear membranes. This study has identified, for the first time, the presence of UGT2B7 and UGT1A6 in the nucleus and of UGT2B7 in the inner and outer nuclear membranes. This localization may play an important functional role within nuclei: protection from toxic compounds and/or control of steady-state concentrations of nuclear receptor ligands.


Subject(s)
Glucuronosyltransferase/analysis , Liver/enzymology , Nuclear Envelope/enzymology , Aged , Blotting, Western , Cell Line , Endoplasmic Reticulum/enzymology , Female , Fluorescent Antibody Technique , Glucuronosyltransferase/immunology , Glucuronosyltransferase/metabolism , Humans , Immunohistochemistry , Microscopy, Fluorescence , Nuclear Envelope/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...