Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mol Pharm ; 18(7): 2647-2656, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34160225

ABSTRACT

Building on clinical case reports of the abscopal effect, there has been considerable interest in the synergistic effects of radiation and immunotherapies for the treatment of cancer. Here, the first radiolabeled antibody-recruiting small molecule that can chelate a variety of cytotoxic radionuclides is described. The platform consists of a tunable antibody-binding domain against a serum antibody of interest (e.g., dinitrophenyl hapten) to recruit endogenous antibodies that activate effector cell function, a chelate capable of binding diagnostic and therapeutic radiometals, and a tetrazine for bioorthogonal coupling with trans-cyclooctene-modified targeting vectors. The dinitrophenyl-tetrazine ligand was shown to both affect dose-dependent antibody recruitment and immune cell function (phagocytosis) in vitro, and the bisphosphonate 177Lu-complex was shown to accumulate at sites of calcium accretion in vivo, which was achieved using both active and pretargeting strategies.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Calcium/metabolism , Dinitrobenzenes/chemistry , Lutetium/chemistry , Radiopharmaceuticals/chemistry , Small Molecule Libraries/chemistry , Animals , Female , Mice , Mice, Inbred BALB C , Phagocytosis , Tissue Distribution
2.
Nucl Med Biol ; 54: 27-33, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28863330

ABSTRACT

INTRODUCTION: Nanoscale perfluorocarbon (PFC) droplets have been used to create imaging agents and drug delivery vehicles. However, development and characterization of new formulations of PFC droplets are hindered because of the lack of simple methods for quantitative and sensitive assessment of whole body tissue distribution and pharmacokinetics of the droplets. To address this issue, a general-purpose method for radiolabeling the inner core of nanoscale perfluorocarbon droplets with a hydrophobic and lipophobic fluorine-18 compound was developed, so that positron emission tomography (PET) and quantitative biodistribution studies can be employed to evaluate PFC nanodroplets in vivo. METHODS: A robust method to produce [18F]CF3(CF2)7(CH2)3F from a tosylate precursor using [18F]F- was developed. The product's effectiveness as a general label for different PFCs and its ability to distinguish the in vivo behavior of different PFC droplet formulations was evaluated using two types of PFC nanodroplets: fluorosurfactant-stabilized perfluorohexane (PFH) nanodroplets and lipid-stabilized perfluorooctylbromide (PFOB) nanodroplets. In vivo assessment of the 18F-labeled PFH and PFOB nanodroplets were conducted in normal mice following intravenous injection using small animal PET imaging and gamma counting of tissues and fluids. RESULTS: [18F]CF3(CF2)7(CH2)3F was produced in modest yield and was stable with respect to loss of fluoride in vitro. The labeled fluorocarbon was successfully integrated into PFH nanodroplets (~175 nm) and PFOB nanodroplets (~260 nm) without altering their mean sizes, size distributions, or surface charges compared to their non-radioactive analogues. No leakage of the radiolabel from the nanodroplets was detected after droplet formation in vitro. PET imaging and biodistribution data for the two droplet types tested showed significantly different tissue uptake and clearance patterns. CONCLUSION: A convenient method for producing 18F-labeled PFC droplets was developed. The results highlight the potential utility of the strategy for pre-clinical evaluation of different PFC droplet formulations through direct PFC core labeling using a fluorinated radiolabel.


Subject(s)
Fluorine Radioisotopes , Fluorocarbons/chemistry , Positron-Emission Tomography/methods , Animals , Female , Fluorocarbons/pharmacokinetics , Half-Life , Isotope Labeling , Mice , Nanostructures/chemistry , Solubility , Tissue Distribution
3.
Dalton Trans ; 46(42): 14691-14699, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-28640297

ABSTRACT

The aim of this work was to synthesize and evaluate [2 + 1] 99mTc(i) polypyridine complexes containing tetrazines, which along with the corresponding Re(i) complexes, represent a new class of isostructural nuclear and turn-on luminescent probes that can be derivatized and targeted using bioorthogonal chemistry. To this end, [2 + 1] complexes of 99mTc(i) of the type [99mTc(CO)3(N^N)(L)] (N^N = bathophenanthroline disulfonate (BPS) or 2,2'-bipyridine (bipy)), where the monodentate ligand (L) was a tetrazine linked to the metal through an imidazole derivative, were prepared. The desired products were obtained in nearly quantitative radiochemical yield by adding [99mTc(CO)3(N^N)(OH2)]n to the imidazole-tetrazine ligand and heating at 60 °C for 30 min. Measurement of the reaction kinetics between the tetrazine and (E)-cyclooct-4-enol revealed a second-order rate constant of 8.6 × 103 M-1 s-1 at 37 °C, which is suitable for in vivo applications that require rapid coupling. Stability studies showed that the metal complexes were resistant to ligand challenge and exhibited reasonable protein binding in vitro. Biodistribution studies of the more water-soluble BPS derivative in normal mice, one hour after administration of a bisphosphonate derivative of trans-cyclooctene (TCO-BP), revealed high activity concentrations in the knee (9.3 ± 0.3 %ID g-1) and shoulder (5.3 ± 0.7 %ID g-1). Using the same pretargeting approach, SPECT/CT imaging showed that the [2 + 1] tetrazine complex localized to implanted skeletal tumors. This is the first report of the preparation of 99mTc complexes of BPS and demonstration that their tetrazine derivatives can be used to prepare targeted imaging probes by employing bioorthogonal chemistry.


Subject(s)
Organotechnetium Compounds/chemistry , Radiochemistry/methods , Electron Transport , Organotechnetium Compounds/pharmacokinetics , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
4.
Inorg Chem ; 56(5): 2958-2965, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28199089

ABSTRACT

Bathophenanthrolinedisulfonate (BPS) complexes of technetium(I) of the type [Tc(CO)3(BPS)(L)]n (L = imidazole derivatives) were synthesized and evaluated both in vitro and in vivo. [99mTc(CO)3(BPS)(MeIm)]- (MeIm = 1-methyl-1H-imidazole) was prepared in near-quantitative yield using a convenient two-step, one-pot labeling procedure. A targeted analogue capable of binding regions of calcium turnover associated with bone metabolism was also prepared. Here, a bisphosphonate was linked to the metal through an imidazole ligand to give [99mTc(CO)3(BPS)(ImAln)]2- (ImAln = an imidazole-alendronate ligand) in high yield. The technetium(I) complexes were stable in vitro, and in biodistribution studies, [99mTc(CO)3(BPS)(ImAln)]2- exhibited rapid clearance from nontarget tissues and significant accumulation in the shoulder (7.9 ± 0.2% ID/g) and knees (15.1 ± 0.9% ID/g) by 6 h, with the residence time in the skeleton reaching 24 h. A rhenium analogue, which is luminescent and has the same structure, was also prepared and used for fluorescence labeling of cells in vitro. The data reported demonstrate the potential of this class of compounds for use in creating isostructural optical and nuclear probes.

5.
J Vis Exp ; (120)2017 02 04.
Article in English | MEDLINE | ID: mdl-28190049

ABSTRACT

Pre-targeting combined with bioorthogonal chemistry is emerging as an effective way to create new radiopharmaceuticals. Of the methods available, the inverse electron demand Diels-Alder (IEDDA) cycloaddition between a radiolabeled tetrazines and trans-cyclooctene (TCO) linked to a biomolecule has proven to be a highly effective bioorthogonal approach to imaging specific biological targets. Despite the fact that technetium-99m remains the most widely used isotope in diagnostic nuclear medicine, there is a scarcity of methods for preparing 99mTc-labeled tetrazines. Herein we report the preparation of a family of tridentate-chelate-tetrazine derivatives and their Tc(I) complexes. These hitherto unknown compounds were radiolabeled with 99mTc using a microwave-assisted method in 31% to 83% radiochemical yield. The products are stable in saline and PBS and react rapidly with TCO derivatives in vitro. Their in vivo pre-targeting abilities were demonstrated using a TCO-bisphosphonate (TCO-BP) derivative that localizes to regions of active bone metabolism or injury. In murine studies, the 99mTc-tetrazines showed high activity concentrations in knees and shoulder joints, which was not observed when experiments were performed in the absence of TCO-BP. The overall uptake in non-target organs and pharmacokinetics varied greatly depending on the nature of the linker and polarity of the chelate.


Subject(s)
Chelating Agents/pharmacology , Cyclooctanes/chemistry , Technetium/pharmacology , Animals , Cycloaddition Reaction , Diphosphonates/analysis , Female , Mice , Mice, Inbred BALB C , Models, Animal , Radiopharmaceuticals/chemistry
7.
Chemistry ; 23(2): 254-258, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27768812

ABSTRACT

Hydrocyanine dyes are sensitive "turn-on" type optical probes that can detect reactive oxygen species (ROS). We have developed a method to prepare an 18 F-labeled hydrocyanine dye as a multi-modal PET and optical "turn-on" probe. A commercially available near infrared (NIR) dye was modified with a fluorinated prosthetic group that did not alter its ROS sensing properties in the presence of superoxide and hydroxyl radicals. The 18 F-labeled analogue was produced using a single-step terminal fluorination procedure. Positron emission tomography (PET) imaging and quantitative in vivo biodistribution studies indicated this novel probe had remarkably different pharmacokinetics compared to the oxidized cyanine analogue. The chemistry reported enables the use of quantitative and dynamic PET imaging for the in vivo study of hydrocyanine dyes as ROS probes.


Subject(s)
Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Reactive Oxygen Species/analysis , Animals , Carbocyanines/pharmacokinetics , Cell Line, Tumor , Fluorescent Dyes/pharmacokinetics , Fluorine Radioisotopes/pharmacokinetics , Halogenation , Humans , Mice , Tissue Distribution
8.
PLoS One ; 11(12): e0167425, 2016.
Article in English | MEDLINE | ID: mdl-27936007

ABSTRACT

A convenient strategy to radiolabel a hydrazinonicotonic acid (HYNIC)-derived tetrazine with 99mTc was developed, and its utility for creating probes to image bone metabolism and bacterial infection using both active and pretargeting strategies was demonstrated. The 99mTc-labelled HYNIC-tetrazine was synthesized in 75% yield and exhibited high stability in vitro and in vivo. A trans-cyclooctene (TCO)-labelled bisphosphonate (TCO-BP) that binds to regions of active calcium metabolism was used to evaluate the utility of the labelled tetrazine for bioorthogonal chemistry. The pretargeting approach, with 99mTc-HYNIC-tetrazine administered to mice one hour after TCO-BP, showed significant uptake of radioactivity in regions of active bone metabolism (knees and shoulders) at 6 hours post-injection. For comparison, TCO-BP was reacted with 99mTc-HYNIC-tetrazine before injection and this active targeting also showed high specific uptake in the knees and shoulders, whereas control 99mTc-HYNIC-tetrazine alone did not. A TCO-vancomycin derivative was similarly employed for targeting Staphylococcus aureus infection in vitro and in vivo. Pretargeting and active targeting strategies showed 2.5- and 3-fold uptake, respectively, at the sites of a calf-muscle infection in a murine model, compared to the contralateral control muscle. These results demonstrate the utility of the 99mTc-HYNIC-tetrazine for preparing new technetium radiopharmaceuticals, including those based on small molecule targeting constructs containing TCO, using either active or pretargeting strategies.


Subject(s)
Bone and Bones/diagnostic imaging , Cyclooctanes/pharmacokinetics , Diphosphonates/pharmacokinetics , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Hydrazines/pharmacokinetics , Nicotinic Acids/pharmacokinetics , Staphylococcal Infections/diagnostic imaging , Technetium/pharmacokinetics , Vancomycin/pharmacokinetics , Animals , Cyclooctanes/chemistry , Diphosphonates/chemistry , Female , Heterocyclic Compounds, 1-Ring/chemistry , Hydrazines/chemistry , Mice , Nicotinic Acids/chemistry , Radionuclide Imaging/methods , Staphylococcus aureus/isolation & purification , Technetium/chemistry , Tissue Distribution , Vancomycin/chemistry
9.
J Med Chem ; 59(20): 9381-9389, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27676258

ABSTRACT

A high yield synthesis of a novel, small molecule, bisphosphonate-modified trans-cyclooctene (TCO-BP, 2) that binds to regions of active bone metabolism and captures functionalized tetrazines in vivo, via the bioorthogonal inverse electron demand Diels-Alder (IEDDA) cycloaddition, was developed. A 99mTc-labeled derivative of 2 demonstrated selective localization to shoulder and knee joints in a biodistribution study in normal mice. Compound 2 reacted rapidly with a 177Lu-labeled tetrazine in vitro, and pretargeting experiments in mice, using 2 and the 177Lu-labeled tetrazine, yielded high activity concentrations in shoulder and knee joints, with minimal uptake in other tissues. Pretargeting experiments with 2 and a novel 99mTc-labeled tetrazine also produced high activity concentrations in the knees and shoulders. Critically, both radiolabeled tetrazines showed negligible uptake in the skeleton and joints when administered in the absence of 2. Compound 2 can be utilized to target functionalized tetrazines to bone and represents a convenient reagent to test novel tetrazines for use with in vivo bioorthogonal pretargeting strategies.


Subject(s)
Bone and Bones/metabolism , Cyclooctanes/pharmacokinetics , Lutetium/pharmacokinetics , Technetium Compounds/pharmacokinetics , Tetrazoles/pharmacokinetics , Animals , Bone and Bones/chemistry , Cyclooctanes/administration & dosage , Cyclooctanes/chemistry , Dose-Response Relationship, Drug , Female , Lutetium/chemistry , Mice , Mice, Inbred BALB C , Molecular Structure , Radioisotopes , Structure-Activity Relationship , Technetium Compounds/chemistry , Tetrazoles/chemistry , Tissue Distribution
10.
Inorg Chem ; 54(4): 1728-36, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25634699

ABSTRACT

The synthesis, stability, and photophysical properties of [2 + 1] Re(I)/Tc(I) complexes derived from bipyridine and a series of imidazole derivatives were investigated as a means of identifying complexes suitable for creating targeted isostructural optical/nuclear molecular imaging probes. To prepare the desired complexes, [Re(CO)3(H2O)3]Br was combined with 2,2'-bipyridine (bipy) to give [Re(CO)3(bipy)Br], which in turn was converted to the desired complexes by treatment with functionalized imidazoles, yielding crystal structures of two new Re complexes. The corresponding (99m)Tc complexes [(99m)Tc(CO)3(bipy)(L)](+) (L = imidazole derivatives) were prepared by combining [(99m)Tc(CO)3(bipy)(H2O)]Cl with the same series of ligands and heating at 40 or 60 °C for 30 min. Quantitative transformation to the final products was confirmed in all cases by HPLC, and the nature of the complexes was verified by comparison to the authentic Re standards. Incubation in saline and plasma, and amino acid challenge experiments showed that N-substituted imidazole derivatives, bearing electron donating groups, exhibited superior stability to analogous metal complexes derived from less basic ligands. Imaging studies in mice revealed that with the appropriate choice of monodentate ligand, it is possible to prepare robust [2 + 1] Tc complexes that can be used as the basis for preparing targeted isostructural optical and nuclear probes.


Subject(s)
Imidazoles , Molecular Probes , Organometallic Compounds , Rhenium , Technetium , Animals , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Cyclization , Humans , Imidazoles/administration & dosage , Imidazoles/chemistry , MCF-7 Cells , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Conformation , Molecular Probes/administration & dosage , Molecular Probes/chemistry , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Rhenium/administration & dosage , Rhenium/chemistry , Technetium/administration & dosage , Technetium/chemistry
11.
J Med Chem ; 57(22): 9564-77, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25360988

ABSTRACT

Dipeptidyl (acyloxy)methyl ketones (AOMKs) were functionalized with different iodine-containing prosthetic groups to generate a library of candidate cathepsin B probes. Compound 23a, (S)-20-[(S)-2-{[(benzyloxy)carbonyl]amino}-3-phenylpropanamido]-1-(4-iodophenyl)-1,14,21-trioxo-5,8,11-trioxa-2,15-diazadocosan-22-yl 2,4,6-trimethylbenzoate, was identified as a potential lead through in vitro screening, having a Ki = 181 ± 9 nM and demonstrating the ability to effectively label active cathepsin B in vitro. Its less potent analogue 11a, (S)-3-[(S)-2-{[(benzyloxy)carbonyl]amino}-3-phenylpropanamido]-7-[6-(4-iodobenzamido)hexanamido]-2-oxoheptyl 2,4,6-trimethylbenzoate, was also tested as a comparison. Biodistribution studies of the iodine-125-labeled compounds in MDA-MB-231 mouse xenografts exhibited tumor uptake of 0.58% ± 0.06% injected dose per gram (ID/g) for [(125)I]11a and 1.12% ± 0.08% ID/g for [(125)I]23a at 30 min. The tumor-to-blood ratios reached 1.2 for [(125)I]23a and 1.6 for [(125)I]11a after 23 h. The more hydrophilic [(125)I]23a showed an improved clearance profile with a superior tumor-to-muscle ratio of 7.0 compared to 3.4 for [(125)I]11a at 23 h. Iodinated AOMK ligands are suitable in vitro probes for cathepsin B and hold promise as a platform to develop molecular imaging probes.


Subject(s)
Cathepsin B/chemistry , Iodine Radioisotopes/chemistry , Ketones/chemistry , Animals , Benzoates/chemistry , Cathepsin A/chemistry , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Enzyme Inhibitors/chemistry , Female , Humans , Hydrogen-Ion Concentration , Iodine/chemistry , Kinetics , Ligands , Liver/metabolism , Mice , Muscles/drug effects , Neoplasm Transplantation , Temperature
12.
ACS Med Chem Lett ; 3(4): 313-6, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-24900470

ABSTRACT

A new prosthetic group referred to as the triazole appending agent (TAAG) was developed as a means to prepare targeted radioiodine-based molecular imaging and therapy agents. Tributyltin-TAAG and the fluorous analogue were synthesized in high yield using simple click chemistry and the products labeled in greater than 95% RCY with (123)I. A TAAG derivative of an inhibitor of prostate-specific membrane antigen was prepared and radiolabeled with (123)I in 85% yield where biodistribution studies in LNCap prostate cancer tumor models showed rapid clearance of the agent from nontarget tissues and tumor accumulation of 20% injected dose g(-1) at 1 h. The results presented demonstrate that the TAAG group promotes minimal nonspecific binding and that labeled conjugates can achieve high tumor uptake and exquisite target-to-nontarget ratios.

13.
Nucl Med Biol ; 38(8): 1111-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21741260

ABSTRACT

INTRODUCTION: Ultrasound (US) contrast agents based on microbubbles (MBs) are being investigated as platforms for drug and gene delivery. A methodology for determining the distribution and fate of modified MBs quantitatively in vivo can be achieved by tagging MBs directly with (99m)Tc. This creates the opportunity to employ dual-modality imaging using both US and small animal SPECT along with quantitative ex vivo tissue counting to evaluate novel MB constructs. METHODS: A (99m)Tc-labeled biotin derivative ((99m)TcL1) was prepared and incubated with streptavidin-coated MBs. The (99m)Tc-labeled bubbles were isolated using a streptavidin-coated magnetic-bead purification strategy that did not disrupt the MBs. A small animal scintigraphic/CT imaging study as well as a quantitative biodistribution study was completed using (99m)TcL1 and (99m)Tc-labeled bubbles in healthy C57Bl-6 mice. RESULTS: The imaging and biodistribution data showed rapid accumulation and retention of (99m)Tc-MBs in the liver (68.2±6.6 %ID/g at 4 min; 93.3±3.2 %ID/g at 60 min) and spleen (214.2±19.7 %ID/g at 4 min; 213.4±19.7 %ID/g at 60 min). In contrast, (99m)TcL1 accumulated in multiple organs including the small intestine (22.5±3.6 %ID/g at 4 min; 83.4±5.9 %ID/g at 60 min) and bladder (184.0±88.1 %ID/g at 4 min; 24.2±17.7 %ID/g at 60 min). CONCLUSION: A convenient means to radiolabel and purify MBs was developed and the distribution of the labeled products determined. The result is a platform which can be used to assess the pharmacokinetics and fate of novel MB constructs both regionally using US and throughout the entire subject in a quantitative manner by employing small animal SPECT and tissue counting.


Subject(s)
Contrast Media/pharmacokinetics , Organotechnetium Compounds/pharmacokinetics , Animals , Contrast Media/chemical synthesis , Female , Intestine, Small/diagnostic imaging , Intestine, Small/metabolism , Liver/diagnostic imaging , Liver/metabolism , Mice , Mice, Inbred C57BL , Microbubbles , Organotechnetium Compounds/chemical synthesis , Radionuclide Imaging , Spleen/diagnostic imaging , Spleen/metabolism , Tissue Distribution , Tomography, X-Ray Computed , Urinary Bladder/diagnostic imaging , Urinary Bladder/metabolism
14.
Nucl Med Biol ; 36(8): 907-17, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19875047

ABSTRACT

INTRODUCTION: The aim of this work was to investigate the relative radiolabelling kinetics and affinity of a series of ligands for the [(99m)Tc(CO)(3)](+) core, both in the absence and in the presence of competing donors. This information was used to select a suitable ligand for radiolabelling complex peptide-based targeting vectors in high yield under mild conditions. METHODS: A series of alpha-N-Fmoc-protected lysine derivatives bearing two heterocyclic donor groups at the epsilon-amine (1a, 2-pyridyl; '1b, quinolyl; '1c, 6-methoxy-2-pyridyl; 1d, 2-thiazolyl; 1e, N-methylimidazolyl; '1f, 3-pyridyl) were synthesized and labelled with (99m)Tc. A resin-capture purification strategy for the separation of residual ligand from the radiolabelled product was also developed. The binding affinities of targeted peptides 4, 5a and 5b for uPAR were determined using flow cytometry. RESULTS: Variable temperature radiolabelling reactions using 1a-'1f and [(99m)Tc(CO)(3)](+) revealed optimal kinetics and good selectivity for compounds '1a and 1d; in the case of '1a, 1d, and 1e, the labelling can be conducted at ambient temperature. The utility of this class of ligands was further demonstrated by the radiolabelling of a cyclic peptide that is known to target the serine protease receptor uPAR; essentially quantitative incorporation of (99m)Tc occurred exclusively at the SAAC site, despite the presence of a His residue, and without disruption of the disulfide bond. CONCLUSION: A series of single amino acid chelate (SAAC) ligands have been evaluated for their ability to incorporate (99m)Tc into peptides. The lead agent to emerge from this work is the thiazole SAAC derivative 1d which has demonstrated the ability to regioselectively label the widest range of peptides.


Subject(s)
Amino Acids/pharmacokinetics , Peptides, Cyclic/pharmacokinetics , Receptors, Urokinase Plasminogen Activator/metabolism , Technetium/pharmacokinetics , Amino Acids/chemistry , Chelating Agents/chemistry , Humans , Isotope Labeling/methods , Peptides, Cyclic/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Technetium/chemistry , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...