Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2732: 179-198, 2024.
Article in English | MEDLINE | ID: mdl-38060126

ABSTRACT

Plants growing in open airfields can be infected by several viruses even as a multiple infection. Virus infection in crops can lead to a serious damage to the harvest. In addition, virus presence in grapevine, fruit trees, and tuberous vegetables, propagated vegetatively affects the phytosanitary status of the propagation material (both the rootstock and the variety) having profound effect on the lifetime and health of the new plantations. The fast evolution of sequencing techniques provides a new opportunity for metagenomics-based viral diagnostics. Small interfering (si) RNAs produced by the RNA silencing-based host immune system during viral infection can be sequenced by high-throughput techniques and analyzed for the presence of viruses, revealing the presence of all known viral pathogens in the sample and therefore opening new avenues in virus diagnostics. This method is based on Illumina sequencing and bioinformatics analysis of virus-derived siRNAs in the host. Here we describe a protocol for this challenging technique step by step with notes, to ensure success for every user.


Subject(s)
Virus Diseases , Viruses , RNA, Small Interfering/genetics , Virome , RNA, Viral/analysis , Viruses/genetics , RNA, Double-Stranded , Plants/genetics , High-Throughput Nucleotide Sequencing/methods , Plant Diseases/genetics
2.
Plants (Basel) ; 11(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890463

ABSTRACT

Grapevine Pinot gris virus (GPGV) was described in Italy using a metagenomic approach: next-generation sequencing of the virus-derived small RNAs. Since that time, it has been reported all over the world. The presence of GPGV is associated with grapevine disease, but most of the time, the disease is asymptomatic. Although the host range of this virus has not been investigated, it has been found in the non-Vitis hosts, Silene latifolia and Chenopodium album. We investigated the presence of GPGV in grapevine and other plant species growing as weeds in the vineyard. Using RT-PCR, we identified GPGV in seven non-Vitis hosts: Ailanthus, Asclepias, Crataegus, Fraxinus, Rosa, Rubus, and Sambucus. In the case of Rosa and Rubus, this finding was supported by Northern blot detection of the virus. GPGV strains in non-Vitis hosts belong to the asymptomatic clade, and are clustered according to their original geographic locations. The presence of GPGV in species other than grapevine shows that besides well-known vector and propagating material-based infections, other possible entry sites for the virus can exist, which have to be taken into consideration when developing reliable regulation strategies.

3.
Plants (Basel) ; 11(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35736743

ABSTRACT

Peach trees can be infected with viruses and viroids. As we do not have efficient plant protection methods against these pathogens, the prevention of infection is crucial. Fruit trees are maintained by vegetative propagation. Planting material such as certified mother trees and rootstocks should be free from viruses and viroids, and this status has to be regularly checked to prevent infections. We surveyed certified peach trees for the presence of viruses and viroids using small RNA high-throughput sequencing (HTS), an unbiased virus diagnostic method. The results of the bioinformatic analysis of HTS were validated by other molecular methods including RT-PCR, Northern blot hybridization and loop-mediated isothermal amplification (LAMP). We found the presence of plum pox virus and peach latent mosaic viroid (PLMVd) in the vector-free isolator houses, whose presence should be regularly tested. Moreover, we detected frequent infection with recently described viruses such as nectarine stem pitting-associated virus and peach-associated luteovirus (PaLV). During the survey, PLMVd and PaLV were detected for the first time in Hungary. The analysis of the presenting virus variants and possible sources of infection suggests that the source of the viral infection could be the infected propagating material. Our study emphasizes the importance of using sensitive and trustworthy diagnostic techniques to be able to detect viral infections and successfully prevent their spread by propagation material.

4.
Viruses ; 13(6)2021 06 10.
Article in English | MEDLINE | ID: mdl-34200935

ABSTRACT

Grapevine virus T (GVT) is a recently described foveavirus, which was identified from a transcriptome of a Teroldego grapevine cultivar in 2017. Recently, we surveyed vineyards and rootstock plantations in Hungary using small RNA (sRNA) high-throughput sequencing (HTS), at a time when GVT had not yet been described. A re-analysis of our sRNA HTS datasets and a survey of grapevines by RT-PCR revealed the presence of GVT in most of the vineyards tested, while at rootstock fields its presence was very rare. The presence and high variability of the virus in the country was confirmed by sequence analysis of strains originating from different vineyards. In this study, we demonstrate the presence of GVT in Hungary and show its high diversity, suggesting that GVT presence may not seriously affect grapevine health and that it could have been present in European vineyards for a long time as a latent infection.


Subject(s)
Flexiviridae , Plant Diseases/virology , Vitis/virology , Flexiviridae/classification , Flexiviridae/genetics , Genome, Viral , Hungary , Phylogeny , RNA, Viral
5.
Plants (Basel) ; 9(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339181

ABSTRACT

Meristem culture and somatic embryogenesis are effective tools for virus elimination of vegetatively propagated crops including grapevine (Vitis vinifera L.). While both have been shown to be useful to eliminate the main grapevine viruses, their efficiency differs depending on the virus and grapevine variety. In our work, we investigated the efficiency of these two virus elimination methods using small RNA high-throughput sequencing (HTS) and RT-PCR as virus diagnostics. Field grown mother plants of four clones representing three cultivars, infected with different viruses and viroids, were selected for elimination via somatic embryogenesis (SE) and meristem culture (ME). Our results show for the first time that using SE, elimination in mother plants was effective for all viruses, i.e., grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus 1 (GSyV-1), Grapevine virus T (GVT) and grapevine Pinot gris virus (GPGV). This study also confirms previous studies showing that SE is a possible strategy for the elimination of GFkV, GRSPaV, HSVd, and GYSVd-1. Our results demonstrate that the efficacy of virus elimination via SE is relatively high while the purging of viroids is lower. Our work provides evidence that the efficiency of SE is comparable to that of the technically difficult ME technique, and that SE will offer a more effective strategy for the production of virus-free grapevine in the future.

6.
Viruses ; 12(6)2020 05 31.
Article in English | MEDLINE | ID: mdl-32486454

ABSTRACT

: Grapevine line pattern virus (GLPV) was first described 30 years ago in Hungary. The lack of its genomic sequences and of an available antiserum made its detection impossible in other parts of the world. Three different high-throughput sequencing (HTS) protocols applied on a GLPV-infected vine allowed the construction of the full genome sequence of this virus. It includes three RNA segments, encoding four proteins: methyltransferase-helicase (1a), RNA-dependent RNA polymerase (2a), movement protein (3a) and coat protein (3b). The obtained sequences were used to design specific primers for its detection by RT-PCR and Northern blot hybridization, respectively. These diagnostic methods were used to test the presence of GLPV in graft-inoculated plants and in 220 grapevine accessions of different Mediterranean origins. The three RNAs-encoding proteins of GLPV shared a very high amino acid identity with those of hop yellow virus, a tentative member of the Anulavirus genus, leaving no doubt that both are two isolates of the same viral species. A circular RNA originating from the RNA2 was found, for which an alternative silencing suppressor role is hypothesized. Further investigation is needed to determine this possibility and also the host range and pathological significance of the virus.


Subject(s)
Bromoviridae/genetics , Genome, Viral/genetics , Plant Diseases/virology , Vitis/virology , Blotting, Northern , Phylogeny , RNA, Circular/genetics , RNA, Viral/genetics , Sequence Analysis, DNA
7.
Viruses ; 10(6)2018 06 11.
Article in English | MEDLINE | ID: mdl-29891760

ABSTRACT

Fruit trees, such as apricot trees, are constantly exposed to the attack of viruses. As they are propagated in a vegetative way, this risk is present not only in the field, where they remain for decades, but also during their propagation. Metagenomic diagnostic methods, based on next generation sequencing (NGS), offer unique possibilities to reveal all the present pathogens in the investigated sample. Using NGS of small RNAs, a special field of these techniques, we tested leaf samples of different varieties of apricot originating from an isolator house or open field stock nursery. As a result, we identified Cherry virus A (CVA) and little cherry virus 1 (LChV-1) for the first time in Hungary. The NGS results were validated by RT-PCR and also by Northern blot in the case of CVA. Cloned and Sanger sequenced viral-specific PCR products enabled us to investigate their phylogenetic relationships. However, since these pathogens have not been described in our country before, their role in symptom development and modification during co-infection with other viruses requires further investigation.


Subject(s)
Closteroviridae/isolation & purification , Flexiviridae/isolation & purification , Prunus armeniaca/virology , RNA, Viral/analysis , Blotting, Northern , Closteroviridae/genetics , Cluster Analysis , Flexiviridae/genetics , High-Throughput Nucleotide Sequencing , Hungary , Metagenomics , Phylogeny , Plant Leaves/virology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology
8.
Methods Mol Biol ; 1746: 115-130, 2018.
Article in English | MEDLINE | ID: mdl-29492890

ABSTRACT

Woody perennial plants like grapevine and fruit trees can be infected by several viruses even as multiple infections. Since they are propagated vegetatively, the phytosanitary status of the propagation material (both the rootstock and the variety) can have a profound effect on the lifetime and health of the new plantations. The fast evolution of sequencing techniques provides a new opportunity for metagenomics-based viral diagnostics. Viral derived small RNAs produced by the host immune system during viral infection can be sequenced by next-generation techniques and analyzed for the presence of viruses, revealing the presence of all known viral pathogens in the sample. This method is based on Illumina sequencing of short RNAs and bioinformatics analysis of virus-derived small RNAs in the host. Here we describe a protocol for this challenging technique step by step with notes, in order to ensure success for every user.


Subject(s)
Plant Diseases/genetics , Plant Viruses/genetics , Prunus/virology , RNA, Small Interfering/genetics , RNA, Viral/analysis , Vitis/virology , Wood/virology , Gene Library , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Metagenomics , Plant Diseases/virology , Plant Viruses/isolation & purification , RNA, Viral/genetics
9.
Neurochem Res ; 36(8): 1464-74, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21512746

ABSTRACT

Although L-glutamate is the main excitatory neurotransmitter in the retina, excess glutamate level triggers severe neuronal damages. Therefore, monosodium glutamate has been used to probe neurodegenerative mechanisms but precise toxicity schedule is not available in vivo. We report, for the first time, a temporal analysis of apoptotic processes induced by subcutaneously applied monosodium glutamate. We investigated the glutamate triggered subcellular processes over a time scale of 48 h in neonatal retina. We employed immunoblots to measure the level of activated apoptotic factors and immunocytochemistry to reveal the dying cells. Upregulation of active caspase-9 started at 3 h and peaked at 6 h post-injection. Activations of caspase-3, caspase-6 and caspase-7 consistent with their late-phase roles increased at 6 h post-injection. The apoptotic processes were terminated by 24 h post-injection. Caspase 12 and calpain-2 seemed unaffected by subcutaneous monosodium glutamate administration. Uniquely, we found that the ubiquitous calpain-1 is not expressed in newborn rat retina.


Subject(s)
Animals, Newborn , Apoptosis/drug effects , Retina/drug effects , Retina/pathology , Sodium Glutamate/pharmacology , Animals , Calpain/metabolism , Caspases/metabolism , Glutamic Acid/metabolism , Isoenzymes/metabolism , Rats , Rats, Wistar , Retina/cytology , Retinal Neurons/cytology , Retinal Neurons/drug effects , Retinal Neurons/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...