Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cell Mol Biol Lett ; 29(1): 67, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724891

ABSTRACT

BACKGROUND: It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS: Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS: This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal ß-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS: LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.


Subject(s)
Endothelial Cells , Energy Metabolism , Fatty Acids , Liver , Oxidative Phosphorylation , Animals , Liver/metabolism , Liver/cytology , Endothelial Cells/metabolism , Mice , Fatty Acids/metabolism , Mitochondria/metabolism , Carnitine/metabolism , Carnitine/analogs & derivatives , Palmitic Acid/metabolism , Mice, Inbred C57BL , Male , Mitochondria, Liver/metabolism , Cells, Cultured , Oxidation-Reduction
2.
Redox Biol ; 72: 103162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669864

ABSTRACT

Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.


Subject(s)
Endothelial Cells , Liver , Protein Disulfide-Isomerases , Animals , Male , Mice , Cell Adhesion , Cells, Cultured , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Enzyme Inhibitors/pharmacology , Liver/metabolism , Liver/cytology , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors
3.
Clin Nutr ; 43(3): 869-880, 2024 03.
Article in English | MEDLINE | ID: mdl-38367596

ABSTRACT

BACKGROUND & AIMS: Butyric (one of the short-chain fatty acids), a major byproduct of the fermentation of non-digestible carbohydrates (e.g. fiber), is supposed to have anti-obesity and anti-inflammatory properties. However, butyrate's potential and mechanism in preventing obesity and the efficient form of administration remain to be clarified. METHODS: Hence, we studied the effect of oral supplementation with 5% (w/w) sodium butyrate and 4% (w/w) ß-glucan (fiber) on young male mice (C57BL/6J) with high-fat diet-induced obesity (HFD: 60 kcal% of fat + 1% of cholesterol). Six weeks old mice were fed diets based on HFD or control (AIN-93G) diet with/without supplements for 4 weeks. The unique, interdisciplinary approach combining several Raman-based techniques (including Raman microscopy and fiber optic Raman spectroscopy) and next-generation sequencing was used to ex vivo analyze various depots of the adipose tissue (white, brown, perivascular) and gut microbiome, respectively. RESULTS: The findings demonstrate that sodium butyrate more effectively prevent the pathological increase in body weight caused by elevated saturated fatty acids influx linked to a HFD in comparison to ß-glucan, thereby entirely inhibiting diet-induced obesity. Moreover, butyrate significantly affects the white adipose tissue (WAT) reducing the epididymal WAT mass in comparison to HFD without supplements, and decreasing lipid saturation in the epididymal WAT and perivascular adipose tissue of the thoracic aorta. Contrarily, ß-glucan significantly changes the composition and diversity of the gut microbiome, reversing the HFD effect, but shows no effect on the epididymal WAT mass and therefore the weight gain inhibition is not as effective as with sodium butyrate. CONCLUSIONS: Here, oral supplementation with sodium butyrate and ß-glucan (fiber) has been proven to have an anti-obesity effect through two different targets. Administration-dependent effects that butyrate imposes on the adipose tissue (oral administration) and microbiome (fiber-derived) make it a promising candidate for the personalized treatment of obesity.


Subject(s)
Obesity , beta-Glucans , Male , Animals , Mice , Mice, Inbred C57BL , Butyric Acid , Obesity/drug therapy , Obesity/prevention & control , Dietary Supplements , beta-Glucans/pharmacology
4.
Acta Physiol (Oxf) ; 240(4): e14116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400621

ABSTRACT

AIM: Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS: Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS: The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION: In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.


Subject(s)
Angiotensin II , Vascular Diseases , Mice , Male , Animals , Angiotensin II/pharmacology , Angiotensin II/metabolism , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/pharmacology , Pulse Wave Analysis , Thrombin/metabolism , Thrombin/pharmacology , Mice, Inbred C57BL , Vascular Diseases/metabolism , Nitric Oxide Synthase Type III/metabolism , Endothelium, Vascular , Nitric Oxide/metabolism
5.
Acta Physiol (Oxf) ; 240(5): e14114, 2024 May.
Article in English | MEDLINE | ID: mdl-38391060

ABSTRACT

AIM: Chronic heart failure (CHF) is often linked to liver malfunction and systemic endothelial dysfunction. However, whether cardio-hepatic interactions in heart failure involve dysfunction of liver sinusoidal endothelial cells (LSECs) is not known. Here we characterize LSECs phenotype in early and end stages of chronic heart failure in a murine model. METHODS: Right ventricle (RV) function, features of congestive hepatopathy, and the phenotype of primary LSECs were characterized in Tgαq*44 mice, with cardiomyocyte-specific overexpression of the Gαq protein, at the age of 4- and 12-month representative for early and end-stage phases of CHF, respectively. RESULTS: 4- and 12-month-old Tgαq*44 mice displayed progressive impairment of RV function and alterations in hepatic blood flow velocity resulting in hepatic congestion with elevated GGT and bilirubin plasma levels and decreased albumin concentration without gross liver pathology. LSECs isolated from 4- and 12-month-old Tgαq*44 mice displayed significant loss of fenestrae with impaired functional response to cytochalasin B, significant changes in proteome related to cytoskeleton remodeling, and altered vasoprotective function. However, LSECs barrier function and bioenergetics were largely preserved. In 4- and 12-month-old Tgαq*44 mice, LSECs defenestration was associated with prolonged postprandial hypertriglyceridemia and in 12-month-old Tgαq*44 mice with proteomic changes of hepatocytes indicative of altered lipid metabolism. CONCLUSION: Tgαq*44 mice displayed right-sided HF and altered hepatic blood flow leading to LSECs dysfunction involving defenestration, shift in eicosanoid profile, and proteomic changes. LSECs dysfunction appears as an early and persistent event in CHF, preceding congestive hepatopathy and contributing to alterations in lipoprotein transport and CHF pathophysiology.

6.
NMR Biomed ; 37(5): e5105, 2024 May.
Article in English | MEDLINE | ID: mdl-38225796

ABSTRACT

This study sought to develop noninvasive, in vivo imaging schemes that allow for quantitative assessment of pulmonary microvascular functional status based on the combination of pulmonary T1 mapping and dynamic contrast-enhanced (DynCE) imaging. Ultrashort-echo-time (UTE) imaging at 9.4 T of lung parenchyma was performed. Retrospective gating was based on modulation of the first point in each recorded spoke. T1 maps were obtained using a series of five consecutive images with varying RF angles and analyzed with the variable flip angle approach. The obtained mean T1 lung value of 1078 ± 38 ms correlated well with previous reports. Improved intersession variability was observed, as evident from a decreased standard deviation of motion-resolved T1 mapping (F-test = 0.051). Animals received lipopolysaccharide (LPS) and were imaged at t = 2, 6, and 12 h after administration. The nitric oxide (NO)-dependent function was assessed according to changes in lung T1 after L-NAME injection, while microvascular perfusion and oxidant stress were assessed with contrast-enhanced imaging after injection of gadolinium or 3-carbamoyl-proxyl nitroxide radical, respectively. Retrospectivel gated UTE allowed robust, motion-compensated imaging that could be used for T1 mapping of lung parenchyma. Changes in lung T1 after L-NAME injection indicated that LPS induced overproduction of NO at t = 2 and 6 h after LPS, but NO-dependent microvascular function was impaired at t = 12 h after LPS. DynCE imaging at t = 6 h after LPS injection revealed decreased microvascular perfusion, with increased vascular permeability and oxidant stress. MRI allows to visualize and quantify lung microvascular NO-dependent function and its concomitant impairment during acute respiratory distress syndrome development with high sensitivity. UTE T1 mapping appears to be sensitive and useful in probing pulmonary microvascular functional status.


Subject(s)
Acute Lung Injury , Nitric Oxide , Animals , Mice , Retrospective Studies , NG-Nitroarginine Methyl Ester , Disease Models, Animal , Lipopolysaccharides , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Oxidants , Imaging, Three-Dimensional/methods
7.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675252

ABSTRACT

The aim of this study was to evaluate the anti-atherosclerotic effect of pomegranate seed oil as a source of conjugated linolenic acid (CLnA) (cis-9,trans-11,cis-13; punicic acid) compared to linolenic acid (LnA) and conjugated linoleic acid (CLA) (cis-9,trans-11) in apoE/LDLR-/- mice. In the LONG experiment, 10-week old mice were fed for the 18 weeks. In the SHORT experiment, 18-week old mice were fed for the 10 weeks. Diets were supplied with seed oils equivalent to an amount of 0.5% of studied fatty acids. In the SHORT experiment, plasma TCh and LDL+VLDL cholesterol levels were significantly decreased in animals fed CLnA and CLA compared to the Control. The expression of PPARα in liver was four-fold increased in CLnA group in the SHORT experiment, and as a consequence the expression of its target gene ACO was three-fold increased, whereas the liver's expression of SREBP-1 and FAS were decreased in CLnA mice only in the LONG experiment. Punicic acid and CLA isomers were determined in the adipose tissue and liver in animals receiving pomegranate seed oil. In both experiments, there were no effects on the area of atherosclerotic plaque in aortic roots. However, in the SHORT experiment, the area of atherosclerosis in the entire aorta in the CLA group compared to CLnA and LnA was significantly decreased. In conclusion, CLnA improved the lipid profile and affected the lipid metabolism gene expression, but did not have the impact on the development of atherosclerotic plaque in apoE/LDLR-/- mice.


Subject(s)
Atherosclerosis , Linoleic Acids, Conjugated , Plaque, Atherosclerotic , Pomegranate , Mice , Animals , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/metabolism , Pomegranate/metabolism , Lipid Metabolism , Linolenic Acids/pharmacology , Linolenic Acids/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Plant Oils/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids, Conjugated/metabolism
8.
Cells ; 10(6)2021 06 09.
Article in English | MEDLINE | ID: mdl-34207844

ABSTRACT

Hyperglycemia linked to diabetes results in endothelial dysfunction. In the present work, we comprehensively characterized effects of short-term hyperglycemia induced by administration of an insulin receptor antagonist, the S961 peptide, on endothelium and perivascular adipose tissue (PVAT) in mice. Endothelial function of the thoracic and abdominal aorta in 12-week-old male C57Bl/6Jrj mice treated for two weeks with S961 infusion via osmotic pumps was assessed in vivo using magnetic resonance imaging and ex vivo by detection of nitric oxide (NO) production using electron paramagnetic resonance spectroscopy. Additional methods were used to analyze PVAT, aortic segments and endothelial-specific plasma biomarkers. Systemic disruption of insulin signaling resulted in severe impairment of NO-dependent endothelial function and a loss of vasoprotective function of PVAT affecting the thoracic as well as abdominal parts of the aorta, however a fall in adiponectin expression and decreased uncoupling protein 1-positive area were more pronounced in the thoracic aorta. Results suggest that dysfunctional PVAT contributes to vascular pathology induced by altered insulin signaling in diabetes, in the absence of fat overload and obesity.


Subject(s)
Adipose Tissue , Endothelium, Vascular , Hyperglycemia/chemically induced , Receptor, Insulin/antagonists & inhibitors , Adiponectin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Uncoupling Protein 1/metabolism
9.
Int J Nanomedicine ; 16: 1377-1390, 2021.
Article in English | MEDLINE | ID: mdl-33658778

ABSTRACT

BACKGROUND: Vascular drug delivery becomes a promising direction in the development of novel therapeutic strategies in the treatment of cardiovascular pathologies, such as hypertension. However, targeted delivery of hydrophobic substances, with poor bioavailability, remains a challenge. Here, we described the hypotensive effects of a low dose of curcumin delivered to the vascular wall using hyaluronic acid-based nanocapsules. METHODS: The group of hypertensive TGR(m-Ren2)27 rats, was administrated respectively with the vehicle, curcumin solution or curcumin delivered using hyaluronic acid-based nanocapsules (HyC12-Cur), for 7 days each, maintaining the wash-out period between treatments. Arterial blood pressure (systolic - SBP, diastolic - DBP) and heart rate (HR) were monitored continuously using a telemetry system (Data Science International), and Mean Arterial Pressure (MAP) was calculated from SBP and DBP. RESULTS: In hypertensive rats, a low dose of curcumin (4.5 mg/kg) administrated in HyC12-Cur for 7 days resulted in a gradual inhibition of SBP, DBP and MAP increase without an effect on HR. At the end of HyC12-Cur - based treatment changes in SBP, DBP and MAP amounted to -2.0±0.8 mmHg, -3.9±0.7 mmHg and -3.3±0.7 mmHg, respectively. In contrast, the administration of a curcumin solution (4.5 mg/kg) did not result in a significant hypotensive effect and the animals constantly developed hypertension. Vascular delivery of capsules with curcumin was confirmed using newly developed fluorine-rich nanocapsules (HyFC10-PFOB) with a shell based on a HA derivative and similar size as HyC12-Cur. HyFC10-PFOB gave fluorine signals in rat aortas analyzed ex vivo with a 19F NMR technique after a single intragastric administration. CONCLUSION: These results suggest that nanocapsules based on hyaluronic acid, the ubiquitous glycosaminoglycan of the extracellular matrix and an integral part of endothelial glycocalyx, may represent a suitable approach to deliver hydrophobic, poorly bioavailable compounds, to the vascular wall.


Subject(s)
Curcumin/administration & dosage , Curcumin/therapeutic use , Hyaluronic Acid/chemistry , Hypertension/drug therapy , Nanocapsules/chemistry , Administration, Oral , Animals , Aorta/drug effects , Aorta/pathology , Blood Pressure/drug effects , Curcumin/pharmacology , Diastole/drug effects , Dose-Response Relationship, Drug , Fluorine/chemistry , Heart Rate/drug effects , Hydrodynamics , Hydrophobic and Hydrophilic Interactions , Hypertension/physiopathology , Magnetic Resonance Spectroscopy , Male , Particle Size , Rats , Static Electricity , Systole/drug effects
10.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166086, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33513427

ABSTRACT

Primary biliary cholangitis (PBC) is an autoimmune disease characterized by progressive destruction of the intrahepatic bile ducts. The immunopathology of PBC involves excessive inflammation; therefore, negative regulators of inflammatory response, such as Monocyte Chemoattractant Protein-1-Induced Protein-1 (MCPIP1) may play important roles in the development of PBC. The aim of this work was to verify whether Mcpip1 expression protects against development of PBC. Genetic deletion of Zc3h12a was used to characterize the role of Mcpip1 in the pathogenesis of PBC in 6-52-week-old mice. We found that Mcpip1 deficiency in the liver (Mcpip1fl/flAlbCre) recapitulates most of the features of human PBC, in contrast to mice with Mcpip1 deficiency in myeloid cells (Mcpip1fl/flLysMCre mice), which present with robust myeloid cell-driven systemic inflammation. In Mcpip1fl/flAlbCre livers, intrahepatic bile ducts displayed proliferative changes with inflammatory infiltration, bile duct destruction, and fibrosis leading to cholestasis. In plasma, increased concentrations of IgG, IgM, and AMA autoantibodies (anti-PDC-E2) were detected. Interestingly, the phenotype of Mcpip1fl/flAlbCre mice was robust in 6-week-old, but milder in 12-24-week-old mice. Hepatic transcriptome analysis of 6-week-old and 24-week-old Mcpip1fl/flAlbCre mice showed 812 and 8 differentially expressed genes, respectively, compared with age-matched control mice, and revealed a distinct set of genes compared to those previously associated with development of PBC. In conclusion, Mcpip1fl/flAlbCre mice display early postnatal phenotype that recapitulates most of the features of human PBC.


Subject(s)
Autoantibodies/immunology , Immunoglobulins/immunology , Inflammation/pathology , Liver Cirrhosis, Biliary/pathology , Liver Cirrhosis/pathology , Phenotype , Ribonucleases/physiology , Animals , Female , Inflammation/etiology , Inflammation/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis, Biliary/etiology , Liver Cirrhosis, Biliary/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
11.
J Transl Med ; 19(1): 6, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407555

ABSTRACT

BACKGROUND: Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS: Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS: We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS: The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.


Subject(s)
Atherosclerosis , Dyslipidemias , Hyperlipoproteinemia Type II , Animals , Atherosclerosis/complications , Dyslipidemias/complications , Humans , Mice , Proprotein Convertase 9 , Proteomics , Receptors, LDL
12.
Biochimie ; 171-172: 223-232, 2020.
Article in English | MEDLINE | ID: mdl-32179167

ABSTRACT

Lipid mediators such as eicosanoids maintain various physiological processes, and their alterations are involved in the development of numerous cardiovascular diseases. Therefore, the reliable assessment of their profile could be helpful in diagnosis as well as in eicosanoid biomarker-based treatment. Hence, the presented study aimed to develop and validate a new rapid, specific and sensitive LC-MS/MS method for quantification of arachidonic acid-derived eicosanoids in plasma, including lipid mediators generated via COX-, LOX- and CYP450-dependent pathways. The developed method features high sensitivity because the lower limit of quantification ranged from 0.05 to 0.50 ng mL-1 as well as the accuracy and precision estimated within 88.88-111.25% and 1.03-11.82%, respectively. An application of a simple and fast liquid-liquid extraction procedure for sample cleaning resulted in a highly satisfactory recovery of the analytes (>88.30%). Additionally, the method was validated using artificial plasma, an approach that enabled the elimination of the matrix effect caused by an endogenous concentration of studied lipid mediators. Importantly, the presented LC-MS/MS method allowed for simultaneous quantitative and qualitative [quan/qual] analysis of the selected eicosanoids, leading to an additional improvement of the method specificity. Moreover, the validated method was successfully applied for eicosanoid profiling in rat, mouse and human plasma samples, clearly demonstrating the heterogeneity of the profile of studied lipid mediators in those species.


Subject(s)
Cardiovascular Diseases/metabolism , Chromatography, High Pressure Liquid/methods , Eicosanoids/blood , Tandem Mass Spectrometry/methods , Animals , Arachidonic Acid , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Humans , Male , Mice , Rats , Sensitivity and Specificity
13.
Front Physiol ; 10: 6, 2019.
Article in English | MEDLINE | ID: mdl-30809151

ABSTRACT

Healthy liver sinusoidal endothelial cells (LSECs) maintain liver homeostasis, while LSEC dysfunction was suggested to coincide with defenestration. Here, we have revisited the relationship between LSEC pro-inflammatory response, defenestration, and impairment of LSEC bioenergetics in non-alcoholic fatty liver disease (NAFLD) in mice. We characterized inflammatory response, morphology as well as bioenergetics of LSECs in early and late phases of high fat diet (HFD)-induced NAFLD. LSEC phenotype was evaluated at early (2-8 week) and late (15-20 week) stages of NAFLD progression induced by HFD in male C57Bl/6 mice. NAFLD progression was monitored by insulin resistance, liver steatosis and obesity. LSEC phenotype was determined in isolated, primary LSECs by immunocytochemistry, mRNA gene expression (qRT-PCR), secreted prostanoids (LC/MS/MS) and bioenergetics (Seahorse FX Analyzer). LSEC morphology was examined using SEM and AFM techniques. Early phase of NAFLD, characterized by significant liver steatosis and prominent insulin resistance, was related with LSEC pro-inflammatory phenotype as evidenced by elevated ICAM-1, E-selectin and PECAM-1 expression. Transiently impaired mitochondrial phosphorylation in LSECs was compensated by increased glycolysis. Late stage of NAFLD was featured by prominent activation of pro-inflammatory LSEC phenotype (ICAM-1, E-selectin, PECAM-1 expression, increased COX-2, IL-6, and NOX-2 mRNA expression), activation of pro-inflammatory prostaglandins release (PGE2 and PGF2α) and preserved LSEC bioenergetics. Neither in the early nor in the late phase of NAFLD, were LSEC fenestrae compromised. In the early and late phases of NAFLD, despite metabolic and pro-inflammatory burden linked to HFD, LSEC fenestrae and bioenergetics are functionally preserved. These results suggest prominent adaptive capacity of LSECs that might mitigate NAFLD progression.

14.
Pharmacol Rep ; 70(3): 463-469, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29631249

ABSTRACT

BACKGROUND: The impairment of liver sinusoidal endothelial cells (LSECs) function and diminished nitric oxide (NO) production has been regarded as an important pathogenic factor in liver steatosis. Restoring NO-dependent function was shown to counteract liver steatosis, obesity, and insulin resistance. However, it is not known whether restored liver perfusion and improvement in hepatic blood flow contributes to the anti-steatotic effects of NO. Taking advantage of in vivo MRI, we have examined the effects of short-term treatment with the hepatoselective NO donor V-PYRRO/NO on hepatic microcirculation in advanced liver steatosis. METHODS: Male C57BL/6 mice fed for six months a high fat diet (HFD; 60 kcal% of fat) were treated for 3 weeks with V-PYRRO/NO (twice a day 5mg/kg b.w. ip). An MRI assessment of liver perfusion using the FAIR-EPI method and a portal vein blood flow using the FLASH method were performed. Blood biochemistry, glucose tolerance tests, a histological evaluation of the liver, and liver NO concentrations were also examined. RESULTS: Short-term treatment with V-PYRRO/NO releasing NO selectively in the liver improved liver perfusion and portal vein blood flow. This effect was associated with a slight improvement in glucose tolerance but there was no effect on liver steatosis, body weight, white adipose tissue mass, plasma lipid profile, or aminotransferase activity. CONCLUSION: Short-term treatment with V-PYRRO/NO-derived NO improves perfusion in hepatic microcirculation and this effect may also contribute to the anti-steatotic effects of hepatoselective NO donors linked previously to the modulation of glucose and lipid metabolism in the liver.


Subject(s)
Fatty Liver/drug therapy , Liver/drug effects , Microcirculation/drug effects , Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Pyrrolidines/pharmacology , Regional Blood Flow/drug effects , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Body Weight/drug effects , Fatty Liver/metabolism , Glucose Tolerance Test/methods , Lipid Metabolism/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Transaminases/metabolism
16.
Food Chem ; 221: 1096-1103, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27979064

ABSTRACT

The objective of the study was to determine the effects of pomegranate seed oil, used as a source of punicic acid (CLnA) in the diets of laying hens, on the physicochemical properties of eggs. Forty Isa Brown laying hens (26weeks old) were equally subjected to 4 dietary treatments (n=10) and fed a commercial layer diet supplying 2.5% sunflower oil (control) or three levels (0.5, 1.0 and 1.5%) of punicic acid in the diets. After 12weeks of feeding the hens, eggs collection began. Sixty eggs - randomly selected from each group - were analysed for physicochemical properties. Eggs naturally enriched with CLnA preserve their composition and conventional properties in most of the analysed parameters (including chemical composition, physical as well as organoleptic properties). Dietary CLnA had positive impact on the colour of the eggs' yolk, whereas the hardness of hard-boiled egg yolks was not affected. Additionally, increasing dietary CLnA led to an increase not only the CLnA concentrations, but also CLA in egg-yolk lipids.


Subject(s)
Animal Feed/analysis , Chemical Phenomena/drug effects , Eggs/analysis , Lythraceae , Plant Oils/administration & dosage , Seeds , Animals , Chickens , Diet/methods , Egg Yolk/chemistry , Fatty Acids/analysis , Female , Lipids/analysis , Sunflower Oil
17.
Pharmacol Rep ; 69(1): 112-118, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27915184

ABSTRACT

BACKGROUND: Cholesterol-dependent and independent mechanisms were proposed to explain anti-atherosclerotic action of statins in humans. However, their effects in murine models of atherosclerosis have not been consistently demonstrated. Here, we studied the effects of pravastatin on atherosclerosis in ApoE/LDLR-/- mice fed a control and atherogenic diet. METHODS: ApoE/LDLR-/- mice were fed a control (CHOW) or an atherogenic (Low Carbohydrate High Protein, LCHP) diet. Two doses of pravastatin (40mg/kg and 100mg/kg) were used. The anti-atherosclerotic effects of pravastatin in en face aorta, cross-sections of aortic roots and brachiocephalic artery (BCA) were analysed. The lipid profile was determined. Fourier Transform Infrared Spectroscopy followed by Fuzzy C-Means (FCM) clustering was used for the quantitative assessment of plaque composition. RESULTS: Treatment with pravastatin (100mg/kg) decreased total and LDL cholesterol only in the LCHP group, but displayed a pronounced anti-atherosclerotic effect in BCA and abdominal aorta. The anti-atherosclerotic effect of pravastatin (100mg/kg) in BCA was associated with significant alterations of the chemical plaque composition, including a fall in cholesterol and cholesterol esters contents independently on total cholesterol and LDL concentration in plasma. CONCLUSIONS: Pravastatin at high (100mg/kg), but not low dose displayed a pronounced anti-atherosclerotic effect in ApoE/LDLR-/- mice fed a CHOW or LCHP diet that was remarkable in BCA, visible in en face aorta, whereas it was not observed in aortic roots, suggesting that previous inconsistencies might have been due to the various sites of atherosclerotic plaque analysis.


Subject(s)
Aorta/drug effects , Apolipoproteins E/deficiency , Atherosclerosis/drug therapy , Brachiocephalic Trunk/drug effects , Pravastatin/therapeutic use , Receptors, LDL/deficiency , Animals , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Aorta/metabolism , Aorta/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Brachiocephalic Trunk/metabolism , Brachiocephalic Trunk/pathology , Female , Mice , Mice, Knockout , Pravastatin/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...