Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soc Neurosci ; 14(2): 136-148, 2019 04.
Article in English | MEDLINE | ID: mdl-29471719

ABSTRACT

Loneliness, the subjective experience of social isolation, may reflect, in part, underlying neural processing of social signals. Aging may exacerbate loneliness due to decreased social networks and increased social isolation, or it may reduce loneliness due to preferential attentional processing of positive information and increased interactions with emotionally close partners. Here, we conducted a functional magnetic resonance imaging (fMRI) study of loneliness in younger (N = 50, 26 female, Mage = 20.4) and older (N = 49, 30 female, Mage = 62.9) adults. Compared to younger adults, older adults were less lonely and dwelled longer on faces, regardless of valence. Previous studies in younger adults found that loneliness was negatively correlated with ventral striatal (VS) activation to pleasant social pictures of strangers yet positively correlated with VS activation to faces of close others. In the present study, we observed no association between loneliness and VS activation to social pictures of strangers in either age group. Further, unlike previous studies, we observed no association between social network size and amygdala activation to social stimuli. Additional research is needed to examine the effect of loneliness and social network size on neural processing of different dimensions of social stimuli.


Subject(s)
Aging/physiology , Aging/psychology , Corpus Striatum/physiology , Loneliness , Social Perception , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
2.
Mol Imaging Biol ; 20(4): 667-681, 2018 08.
Article in English | MEDLINE | ID: mdl-29423903

ABSTRACT

PURPOSE: Inhibition of the isoform A of monoamine oxidase (MAO-A), a mitochondrial enzyme catalyzing deamination of monoamine neurotransmitters, is useful in treatment of depression and anxiety disorders. [11C]harmine, a MAO-A PET radioligand, has been used to study mood disorders and antidepressant treatment. However, [11C]harmine binding test-retest characteristics have to date only been partially investigated. Furthermore, since MAO-A is ubiquitously expressed, no reference region is available, thus requiring arterial blood sampling during PET scanning. Here, we investigate [11C]harmine binding measurements test-retest properties; assess effects of using a minimally invasive input function estimation on binding quantification and repeatability; and explore binding potentials estimation using a reference region-free approach. PROCEDURES: Quantification of [11C]harmine distribution volume (VT) via kinetic models and graphical analyses was compared based on absolute test-retest percent difference (TRPD), intraclass correlation coefficient (ICC), and identifiability. The optimal procedure was also used with a simultaneously estimated input function in place of the measured curve. Lastly, an approach for binding potentials quantification in absence of a reference region was evaluated. RESULTS: [11C]harmine VT estimates quantified using arterial blood and kinetic modeling showed average absolute TRPD values of 7.7 to 15.6 %, and ICC values between 0.56 and 0.86, across brain regions. Using simultaneous estimation (SIME) of input function resulted in VT estimates close to those obtained using arterial input function (r = 0.951, slope = 1.073, intercept = - 1.037), with numerically but not statistically higher test-retest difference (range 16.6 to 22.0 %), but with overall poor ICC values, between 0.30 and 0.57. CONCLUSIONS: Prospective studies using [11C]harmine are possible given its test-retest repeatability when binding is quantified using arterial blood. Results with SIME of input function show potential for simplifying data acquisition by replacing arterial catheterization with one arterial blood sample at 20 min post-injection. Estimation of [11C]harmine binding potentials remains a challenge that warrants further investigation.


Subject(s)
Brain/enzymology , Carbon Radioisotopes/chemistry , Harmine/chemistry , Monoamine Oxidase/metabolism , Adolescent , Adult , Aged , Carbon Radioisotopes/blood , Harmine/pharmacokinetics , Humans , Male , Middle Aged , Time Factors , Young Adult
3.
J Neurosci ; 32(31): 10494-506, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22855799

ABSTRACT

It is becoming increasingly clear that the brain processes sensory stimuli differently according to whether they are passively or actively acquired, and these differences can be seen early in the sensory pathway. In the nucleus of the solitary tract (NTS), the first relay in the central gustatory neuraxis, a rich variety of sensory inputs generated by active licking converge. Here, we show that taste responses in the NTS reflect these interactions. Experiments consisted of recordings of taste-related activity in the NTS of awake rats as they freely licked exemplars of the five basic taste qualities (sweet, sour, salty, bitter, umami). Nearly all taste-responsive cells were broadly tuned across taste qualities. A subset responded to taste with long latencies (>1.0 s), suggesting the activation of extraoral chemoreceptors. Analyses of the temporal characteristics of taste responses showed that spike timing conveyed significantly more information than spike count alone in almost one-half of NTS cells, as in anesthetized rats, but with less information per cell. In addition to taste-responsive cells, the NTS contains cells that synchronize with licks. Since the lick pattern per se can convey information, these cells may collaborate with taste-responsive cells to identify taste quality. Other cells become silent during licking. These latter "antilick" cells show a surge in firing rate predicting the beginning and signaling the end of a lick bout. Collectively, the data reveal a complex array of cell types in the NTS, only a portion of which include taste-responsive cells, which work together to acquire sensory information.


Subject(s)
Drinking Behavior/physiology , Neurons/physiology , Solitary Nucleus/physiology , Taste/physiology , Wakefulness , Action Potentials/physiology , Animals , Citric Acid/pharmacology , Dose-Response Relationship, Drug , Male , Neural Inhibition/physiology , Neurons/drug effects , Quinine/pharmacology , Rats , Rats, Sprague-Dawley , Reaction Time/physiology , Reinforcement Schedule , Reinforcement, Psychology , Sodium Chloride/pharmacology , Solitary Nucleus/cytology , Sucrose/pharmacology , Sweetening Agents/pharmacology , Taste/drug effects
4.
Mol Metab ; 1(1-2): 10-20, 2012.
Article in English | MEDLINE | ID: mdl-24024114

ABSTRACT

Hormonal and metabolic signals interact with neural circuits orchestrating behavior to guide food intake. Neuroimaging techniques such as functional magnetic resonance imaging (fMRI) enable the identification of where in the brain particular mental processes like desire, satiety and pleasure occur. Once these neural circuits are described it then becomes possible to determine how metabolic and hormonal signals can alter brain response to influence psychological states and decision-making processes to guide intake. Here, we provide an overview of the contributions of functional neuroimaging to the understanding of how subjective and neural responses to food and food cues interact with metabolic/hormonal factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...