Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Rev (Melville) ; 5(2): 021401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895135

ABSTRACT

Microelectrode recordings from human peripheral and cranial nerves provide a means to study both afferent and efferent axonal signals at different levels of detail, from multi- to single-unit activity. Their analysis can lead to advancements both in diagnostic and in the understanding of the genesis of neural disorders. However, most of the existing computational toolboxes for the analysis of microneurographic recordings are limited in scope or not open-source. Additionally, conventional burst-based metrics are not suited to analyze pathological conditions and are highly sensitive to distance of the microelectrode tip from the active axons. To address these challenges, we developed an open-source toolbox that offers advanced analysis capabilities for studying neuronal reflexes and physiological responses to peripheral nerve activity. Our toolbox leverages the observation of temporal sequences of action potentials within inherently cyclic signals, introducing innovative methods and indices to enhance analysis accuracy. Importantly, we have designed our computational toolbox to be accessible to novices in biomedical signal processing. This may include researchers and professionals in healthcare domains, such as clinical medicine, life sciences, and related fields. By prioritizing user-friendliness, our software application serves as a valuable resource for the scientific community, allowing to extract advanced metrics of neural activity in short time and evaluate their impact on other physiological variables in a consistent and standardized manner, with the final aim to widen the use of microneurography among researchers and clinicians.

2.
Artif Intell Med ; 130: 102328, 2022 08.
Article in English | MEDLINE | ID: mdl-35809967

ABSTRACT

The continuous monitoring of an individual's breathing can be an instrument for the assessment and enhancement of human wellness. Specific respiratory features are unique markers of the deterioration of a health condition, the onset of a disease, fatigue and stressful circumstances. The early and reliable prediction of high-risk situations can result in the implementation of appropriate intervention strategies that might be lifesaving. Hence, smart wearables for the monitoring of continuous breathing have recently been attracting the interest of many researchers and companies. However, most of the existing approaches do not provide comprehensive respiratory information. For this reason, a meta-learning algorithm based on LSTM neural networks for inferring the respiratory flow from a wearable system embedding FBG sensors and inertial units is herein proposed. Different conventional machine learning approaches were implemented as well to ultimately compare the results. The meta-learning algorithm turned out to be the most accurate in predicting respiratory flow when new subjects are considered. Furthermore, the LSTM model memory capability has been proven to be advantageous for capturing relevant aspects of the breathing pattern. The algorithms were tested under different conditions, both static and dynamic, and with more unobtrusive device configurations. The meta-learning results demonstrated that a short one-time calibration may provide subject-specific models which predict the respiratory flow with high accuracy, even when the number of sensors is reduced. Flow RMS errors on the test set ranged from 22.03 L/min, when the minimum number of sensors was considered, to 9.97 L/min for the complete setting (target flow range: 69.231 ± 21.477 L/min). The correlation coefficient r between the target and the predicted flow changed accordingly, being higher (r = 0.9) for the most comprehensive and heterogeneous wearable device configuration. Similar results were achieved even with simpler settings which included the thoracic sensors (r ranging from 0.84 to 0.88; test flow RMSE = 10.99 L/min, when exclusively using the thoracic FBGs). The further estimation of respiratory parameters, i.e., rate and volume, with low errors across different breathing behaviors and postures proved the potential of such approach. These findings lay the foundation for the implementation of reliable custom solutions and more sophisticated artificial intelligence-based algorithms for daily life health-related applications.


Subject(s)
Artificial Intelligence , Wearable Electronic Devices , Algorithms , Humans , Machine Learning , Respiration
3.
Nanomaterials (Basel) ; 10(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438635

ABSTRACT

Hydrothermal growth of ZnO nanorods has been widely used for the development of tactile sensors, with the aid of ZnO seed layers, favoring the growth of dense and vertically aligned nanorods. However, seed layers represent an additional fabrication step in the sensor design. In this study, a seedless hydrothermal growth of ZnO nanorods was carried out on Au-coated Si and polyimide substrates. The effects of both the Au morphology and the growth temperature on the characteristics of the nanorods were investigated, finding that smaller Au grains produced tilted rods, while larger grains provided vertical rods. Highly dense and high-aspect-ratio nanorods with hexagonal prismatic shape were obtained at 75 °C and 85 °C, while pyramid-like rods were grown when the temperature was set to 95 °C. Finite-element simulations demonstrated that prismatic rods produce higher voltage responses than the pyramid-shaped ones. A tactile sensor, with an active area of 1 cm2, was fabricated on flexible polyimide substrate and embedding the nanorods forest in a polydimethylsiloxane matrix as a separation layer between the bottom and the top Au electrodes. The prototype showed clear responses upon applied loads of 2-4 N and vibrations over frequencies in the range of 20-800 Hz.

SELECTION OF CITATIONS
SEARCH DETAIL
...