Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 10: 1055432, 2023.
Article in English | MEDLINE | ID: mdl-36968467

ABSTRACT

Salmonella enterica is an important zoonotic pathogen that is frequently identified in dairy farming systems. An increase in antibiotic resistance has led to inadequate results of treatments, with impacts on animal and human health. Here, the phenotypic and genotypic susceptibility patterns of Salmonella isolates from dairy cattle and dairy farm environments were evaluated and compared. A collection of 75 S. enterica isolates were evaluated, and their phenotypic susceptibility was determined. For genotypic characterization, the whole genomes of the isolates were sequenced, and geno-serotypes, sequence types (STs) and core-genome-sequence types were determined using the EnteroBase pipeline. To characterize antibiotic resistance genes and gene mutations, tools from the Center for Genomic Epidemiology were used. Salmonella Dublin (SDu), S. Typhimurium (STy), S. Anatum (SAn), S. Newport (SNe), S. Agona (Sag), S. Montevideo (SMo) and IIIb 61:i:z53 were included in the collection. A single sequence type was detected per serovar. Phenotypic non-susceptibility to streptomycin and tetracycline was very frequent in the collection, and high non-susceptibility to ciprofloxacin was also observed. Multidrug resistance (MDR) was observed in 42 isolates (56.0%), with SAn and STy presenting higher MDR than the other serovars, showing non-susceptibility to up to 6 groups of antibiotics. Genomic analysis revealed the presence of 21 genes associated with antimicrobial resistance (AMR) in Salmonella isolates. More than 60% of the isolates carried some gene associated with resistance to aminoglycosides and tetracyclines. Only one gene associated with beta-lactam resistance was found, in seven isolates. Two different mutations were identified, parC_T57S and acrB_R717Q, which confer resistance to quinolones and azithromycin, respectively. The accuracy of predicting antimicrobial resistance phenotypes based on AMR genotypes was 83.7%. The genomic approach does not replace the phenotypic assay but offers valuable information for the survey of circulating antimicrobial resistance. This work represents one of the first studies evaluating phenotypic and genotypic AMR in Salmonella from dairy cattle in South America.

2.
Microbiome ; 10(1): 208, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36457116

ABSTRACT

BACKGROUND: The microbial community composition of urban environments is primarily determined by human activity. The use of metagenomics to explore how microbial communities are shaped in a city provides a novel input that can improve decisions on public health measures, architectural design, and urban resilience. Of note, the sewage system in a city acts as a complex reservoir of bacteria, pharmaceuticals, and antimicrobial resistant (AMR) genes that can be an important source of epidemiological information. Hospital effluents are rich in patient-derived bacteria and can thus readily become a birthplace and hotspot reservoir for antibiotic resistant pathogens which are eventually incorporated into the environment. Yet, the scope to which nosocomial outbreaks impact the urban environment is still poorly understood. RESULTS: In this work, we extensively show that different urban waters from creeks, beaches, sewage spillways and collector pipes enclose discrete microbial communities that are characterized by a differential degree of contamination and admixture with human-derived bacteria. The abundance of human bacteria correlates with the abundance of AMR genes in the environment, with beta-lactamases being the top-contributing class to distinguish low vs. highly-impacted urban environments. Indeed, the abundance of beta-lactamase resistance and carbapenem resistance determinants in the urban environment significantly increased in a 1-year period. This was in line with a pronounced increase of nosocomial carbapenem-resistant infections reported during the same period that was mainly driven by an outbreak-causing, carbapenemase-producing Klebsiella pneumoniae (KPC) ST-11 strain. Genome-resolved metagenomics of urban waters before and after this outbreak, coupled with high-resolution whole-genome sequencing, confirmed the dissemination of the ST-11 strain and a novel KPC megaplasmid from the hospital to the urban environment. City-wide analysis showed that geospatial dissemination of the KPC megaplasmid in the urban environment inversely depended on the sewage system infrastructure. CONCLUSIONS: We show how urban metagenomics and outbreak genomic surveillance can be coupled to generate relevant information for infection control, antibiotic stewardship, and pathogen epidemiology. Our results highlight the need to better characterize and understand how human-derived bacteria and antimicrobial resistance disseminate in the urban environment to incorporate this information in the development of effluent treatment infrastructure and public health policies. Video Abstract.


Subject(s)
Cross Infection , Microbiota , Humans , Anti-Bacterial Agents/pharmacology , Sewage , Drug Resistance, Bacterial/genetics , Microbiota/genetics , Hospitals , Carbapenems
3.
Vet Med Sci ; 8(2): 735-740, 2022 03.
Article in English | MEDLINE | ID: mdl-35040277

ABSTRACT

Listeriosis is one of the most common nervous diseases in ruminants, and is caused almost exclusively by the Gram-positive bacterium, Listeria monocytogenes. However, there are few reports of listeriosis associated with L. innocua, which is genetically closely related to L. monocytogenes, but considered non-pathogenic. In this work, we report two cases of suppurative meningoencephalitis in apparently previously healthy ruminants from different farms, in which two strains of L. innocua were recovered. The whole genomes from both isolates were sequenced, allowing phylogenetic analyses to be performed, which indicated that the two strains were very closely related. Virulence determinants were searched, especially genes coding for the main L. monocytogenes virulence factors which have been previously described in L. innocua. Surprisingly, the two isolates do not possess such virulence determinants. Instead, both strains carried a set of genes that encode for other virulence factors of the genus Listeria detected  using the Virulence Factor Database (VFDB): iap (division and invasion of host cells), lpeA (entry into non-professional phagocytes cells), fbpA (multifunctional virulence factor, including adherence to host cells), lspA (surface protein anchoring), lap (adhesion to enterocytes and trans epithelial translocation), pdgA (resistance to lysozyme), oatA (resistance to different antimicrobial compounds and also required for growth inside macrophages), lplA1 (use of host-metabolites for in vivo growth), gtcA (catalyses teichoic acid of bacterial wall), prsA2 (cell invasion, vacuole lysis and intracellular growth), clpC, clpE and clpP (survival under several stress conditions). These genes among others detected, could be involved in the ability of L. innocua to produce damage in animal and human hosts. These results highlight the multifactorial profile of Listeria pathogenesis and the need for comprehensive scientific research that address microbiological, environmental and veterinary aspects of listeriosis.


Subject(s)
Listeria , Listeriosis , Animals , Listeria/genetics , Listeriosis/microbiology , Listeriosis/veterinary , Phylogeny , Ruminants , Virulence/genetics , Virulence Factors/genetics
4.
Front Vet Sci ; 7: 583930, 2020.
Article in English | MEDLINE | ID: mdl-33240959

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes are worldwide recognized zoonotic pathogens. Recent reports have emerged about the circulation of antimicrobial-resistant STEC and L. monocytogenes isolates. To assess the frequency of antimicrobial resistance and related genes in these pathogens, we studied 45 STEC and 50 L. monocytogenes isolates locally recovered from different sources. Antimicrobial susceptibility testing was performed by disk-diffusion method, and the genomic sequences of three selected STEC and from all 50 L. monocytogenes isolates were analyzed for antibiotic resistance genes. Four STEC and three L. monocytogenes isolates were phenotypically resistant to at least one of the antibiotics tested. Resistance genes aph(3″)-Ib, aph(3')-Ia, aph(6)-Id, bla T EM-1B, sul2, mef (A), and tet(A) were found in a human STEC ampicillin-resistant isolate. All L. monocytogenes isolates harbored fosX, lin, mdrL, lde fepA, and norB. Overall resistance in L. monocytogenes and STEC was low or middle. However, the high load of resistance genes found, even in susceptible isolates, suggests that these pathogens could contribute to the burden of antimicrobial resistance.

6.
Sci Rep ; 10(1): 3638, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32109937

ABSTRACT

Salmonella enterica serovar Enteritidis is a major cause of foodborne disease in Uruguay since 1995. We used a genomic approach to study a set of isolates from different sources and years. Whole genome phylogeny showed that most of the strains are distributed in two major lineages (E1 and E2), both belonging to MLST sequence type 11 the major ST among serovar Enteritidis. Strikingly, E2 isolates are over-represented in periods of outbreak abundance in Uruguay, while E1 span all epidemic periods. Both lineages circulate in neighbor countries at the same timescale as in Uruguay, and are present in minor numbers in distant countries. We identified allelic variants associated with each lineage. Three genes, ycdX, pduD and hsdM, have distinctive variants in E1 that may result in defective products. Another four genes (ybiO, yiaN, aas, aceA) present variants specific for the E2 lineage. Overall this work shows that S. enterica serovar Enteritidis strains circulating in Uruguay have the same phylogenetic profile than strains circulating in the region, as well as in more distant countries. Based on these results we hypothesize that the E2 lineage, which is more prevalent during epidemics, exhibits a combination of allelic variants that could be associated with its epidemic ability.


Subject(s)
Bacterial Proteins/genetics , Disease Outbreaks , Phylogeny , Salmonella Infections , Salmonella enteritidis/genetics , Humans , Multilocus Sequence Typing , Salmonella Infections/epidemiology , Salmonella Infections/genetics , Salmonella enteritidis/isolation & purification , Uruguay/epidemiology
7.
Microbiome ; 7(1): 35, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30819245

ABSTRACT

BACKGROUND: Microbial communities present in environmental waters constitute a reservoir for antibiotic-resistant pathogens that impact human health. For this reason, a diverse variety of water environments are being analyzed using metagenomics to uncover public health threats. However, the composition of these communities along the coastal environment of a whole city, where sewage and beach waters are mixed, is poorly understood. RESULTS: We shotgun-sequenced 20 coastal areas from the city of Montevideo (capital of Uruguay) including beach and sewage water samples to characterize bacterial communities and their virulence and antibiotic resistance repertories. As expected, we found that sewage and beach environments present significantly different bacterial communities. This baseline allowed us to detect a higher prevalence and a more diverse repertory of virulence and antibiotic-resistant genes in sewage samples. Many of these genes come from well-known enterobacteria and represent carbapenemases and extended-spectrum betalactamases reported in hospital infections in Montevideo. Additionally, we were able to genotype the presence of both globally disseminated pathogenic clones and emerging antibiotic-resistant bacteria in sewage waters. CONCLUSIONS: Our study represents the first in using metagenomics to jointly analyze beaches and the sewage system from an entire city, allowing us to characterize antibiotic-resistant pathogens circulating in urban waters. The data generated in this initial study represent a baseline metagenomic exploration to guide future longitudinal (time-wise) studies, whose systematic implementation will provide useful epidemiological information to improve public health surveillance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/classification , Metagenomics/methods , Sewage/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Bacterial Proteins/genetics , Bathing Beaches , Cross-Sectional Studies , Drug Resistance, Bacterial , Humans , Sequence Analysis, DNA , Uruguay , Water Microbiology
8.
Article in English | MEDLINE | ID: mdl-30533746

ABSTRACT

Metagenomics is providing a broad overview of bacterial functional diversity; however, culturing and biobanking are still essential for microbiology. Here, we present the Bacterial Biobank of the Urban Environment (BBUE), a sizable culture collection for long-term storage and characterization of the microbiota associated with urban environments relevant for public health.

9.
Article in English | MEDLINE | ID: mdl-30533879

ABSTRACT

Multidrug-resistant Salmonella enterica isolates are an increasing problem worldwide; nevertheless, the mechanisms responsible for such resistance are rarely well defined. Multidrug-resistant S. enterica serovar Typhimurium isolates ST3224 and ST827 were collected from two patients. The characteristics of both genomes and antimicrobial resistance genes were determined using next-generation sequencing.

10.
Microb Genom ; 4(3)2018 03.
Article in English | MEDLINE | ID: mdl-29509137

ABSTRACT

Salmonella enterica serovar Enteritidis is a major agent of foodborne diseases worldwide. In Uruguay, this serovar was almost negligible until the mid 1990s but since then it has become the most prevalent. Previously, we characterized a collection of strains isolated from 1988 to 2005 and found that the two oldest strains were the most genetically divergent. In order to further characterize these strains, we sequenced and annotated eight genomes including those of the two oldest isolates. We report on the identification and characterization of a novel 44 kbp Salmonella prophage found exclusively in these two genomes. Sequence analysis reveals that the prophage is a mosaic, with homologous regions in different Salmonella prophages. It contains 60 coding sequences, including two genes, gogB and sseK3, involved in virulence and modulation of host immune response. Analysis of serovar Enteritidis genomes available in public databases confirmed that this prophage is absent in most of them, with the exception of a group of 154 genomes. All 154 strains carrying this prophage belong to the same sequence type (ST-1974), suggesting that its acquisition occurred in a common ancestor. We tested this by phylogenetic analysis of 203 genomes representative of the intraserovar diversity. The ST-1974 forms a distinctive monophyletic lineage, and the newly described prophage is a phylogenetic signature of this lineage that could be used as a molecular marker. The phylogenetic analysis also shows that the major ST (ST-11) is polyphyletic and might have given rise to almost all other STs, including ST-1974.


Subject(s)
DNA, Bacterial/isolation & purification , Phylogeny , Prophages/isolation & purification , Salmonella enteritidis/isolation & purification , DNA, Bacterial/genetics , Genetic Markers , Genome, Bacterial , Multilocus Sequence Typing , Prophages/genetics , Salmonella enteritidis/genetics , Serogroup , Uruguay
11.
Infect Immun ; 86(1)2018 01.
Article in English | MEDLINE | ID: mdl-29061704

ABSTRACT

Salmonella enterica serovar Dublin is adapted to cattle but is able to infect humans with high invasiveness. An acute inflammatory response at the intestine helps to prevent Salmonella dissemination to systemic sites. Flagella contribute to this response by providing motility and FliC-mediated signaling through pattern recognition receptors. In a previous work, we reported a high frequency (11 out of 25) of S Dublin isolates lacking flagella in a collection obtained from humans and cattle. The aflagellate strains were impaired in their proinflammatory properties in vitro and in vivo The aim of this work was to elucidate the underlying cause of the absence of flagella in S Dublin isolates. We report here that class 3 flagellar genes are repressed in the human aflagellate isolates, due to impaired secretion of FliA anti-sigma factor FlgM. This phenotype is due to an in-frame 42-nucleotide deletion in the fliE gene, which codes for a protein located in the flagellar basal body. The deletion is predicted to produce a protein lacking amino acids 18 to 31. The aflagellate phenotype was highly stable; revertants were obtained only when fliA was artificially overexpressed combined with several successive passages in motility agar. DNA sequence analysis revealed that motile revertants resulted from duplications of DNA sequences in fliE adjacent to the deleted region. These duplications produced a FliE protein of similar length to the wild type and demonstrate that amino acids 18 to 31 of FliE are not essential. The same deletion was detected in S Dublin isolates obtained from cattle, indicating that this mutation circulates in nature.


Subject(s)
Bacterial Proteins/genetics , Flagella/genetics , Salmonella enterica/genetics , Sequence Deletion/genetics , Amino Acid Sequence , Amino Acids , Animals , Basal Bodies/metabolism , Base Sequence , Cattle , Female , Genes, Duplicate/genetics , Humans , Inflammation/microbiology , Mice , Mice, Inbred C57BL , Phenotype , Salmonella Infections, Animal/microbiology , Sequence Alignment , Sigma Factor/genetics
12.
FEMS Immunol Med Microbiol ; 63(2): 174-82, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22077220

ABSTRACT

Proteus mirabilis is an opportunistic pathogen that frequently causes complicated urinary tract infections. Among a wide spectrum of potential virulence factors, outer membrane proteins (OMPs) are critical for bacterial interactions and survival in different environments. In this work, we used a proteomic approach to assess P. mirabilis in vivo OMPs expression compared to in vitro, including iron replete and iron-restricted conditions. Three putative iron receptors, IreA, PMI0842, and PMI2596, were detected both in bacterium grown in vivo and in vitro under iron-restricted conditions. A prophage gene product, PMI1721, was detected only on in vivo growing bacterium, suggesting a potential role yet to be disclosed on the surface of P. mirabilis. Plasminogen, a host protein, was co-purified with OMPs of in vivo grown bacteria, which is in accordance with previous observations and suggests that plasminogen bound to P. mirabilis surface may be associated to virulence as seen in other bacterial pathogens. Western blots using sera of experimentally challenged mice showed that iron-regulated proteins are expressed and highly immunogenic during infection. This work confirms observations made by others for P. mirabilis and reveals details not yet described, suggesting new aspects of the bacterium pathogenesis that remain unknown.


Subject(s)
Bacterial Outer Membrane Proteins/analysis , Proteome/analysis , Proteus mirabilis/chemistry , Proteus mirabilis/growth & development , Animals , Female , Gene Expression Regulation, Bacterial , Mice , Rats , Rats, Sprague-Dawley , Urinary Tract/microbiology , Virulence Factors/biosynthesis
13.
J Med Microbiol ; 56(Pt 12): 1600-1607, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18033826

ABSTRACT

Proteus mirabilis, a common cause of urinary tract infections, expresses iron-regulated outer-membrane proteins (OMPs) in response to iron restriction. It has been suggested that a 64 kDa OMP is involved in haemoprotein uptake and that this might have a role in pathogenesis. In order to confirm this hypothesis, this study generated a P. mirabilis mutant strain (P7) that did not express the 64 kDa OMP, by insertion of the TnphoA transposon. The nucleotide sequence of the interrupted gene revealed that it corresponded to a haemin receptor precursor. Moreover, in vitro growth assays showed that the mutant was unable to grow using haemoglobin and haemin as unique iron sources. The authors also carried out in vivo growth and infectivity assays and demonstrated that P7 was not able to survive in an in vivo model and was less efficient than wild-type strain Pr 6515 in colonizing the urinary tract. These results confirmed that the P. mirabilis 64 kDa iron-regulated OMP is a haem receptor that has an important role for survival and multiplication of these bacteria in the mammalian host and in the development of urinary tract infection.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Iron/pharmacology , Proteus mirabilis/metabolism , Receptors, Cell Surface/metabolism , Urinary Tract Infections/physiopathology , Bacterial Outer Membrane Proteins/immunology , Gene Expression Regulation, Bacterial , Iron/metabolism , Proteus Infections/microbiology , Proteus mirabilis/physiology , Urinary Tract Infections/microbiology
14.
J Invertebr Pathol ; 93(1): 67-70, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16843485

ABSTRACT

Mortality of honeybees is a serious problem that beekeepers have to face periodically in Uruguay and worldwide. The presence of RNA viruses, in addition to other pathogens may be one of its possible causes. In this work, we detected Chronic bee paralysis virus, Acute bee paralysis virus, Black queen cell virus, Sacbrood virus and Deformed wing virus in samples of Uruguayan honeybees with or without Varroa destructor and Nosema apis. The detection of viruses in different provinces, simultaneous co-infection of colonies by several viruses and the fact that 96% of the samples were infected with one or more virus, indicates they are widely spread in the region.


Subject(s)
Bees/virology , Insect Viruses/isolation & purification , RNA Viruses/isolation & purification , Virus Diseases/diagnosis , Animals , Insect Viruses/genetics , Insect Viruses/pathogenicity , RNA Viruses/genetics , RNA Viruses/pathogenicity , RNA, Viral/analysis , Virus Diseases/virology
15.
J Invertebr Pathol ; 90(1): 69-72, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16169006

ABSTRACT

Chronic bee paralysis virus (CBPV) causes a disease characterized by trembling, flightless, and crawling bees, while Acute bee paralysis virus (ABPV) is commonly detected in apparently healthy colonies, usually associated to Varroa destructor. Both viruses had been detected in most regions of the world, except in South America. In this work, we detected CBPV and ABPV in samples of Uruguayan honeybees by RT-PCR. The detection of both viruses in different provinces and the fact that most of the analyzed samples were infected, suggest that, they are widely spread in the region. This is the first record of the presence of CBPV and ABPV in Uruguay and South America.


Subject(s)
Bees/virology , Insect Viruses/isolation & purification , Paralysis/veterinary , Acute Disease , Animal Diseases/virology , Animals , Chronic Disease , Paralysis/virology , Uruguay
16.
J Invertebr Pathol ; 86(1-2): 56-8, 2004.
Article in English | MEDLINE | ID: mdl-15145253

ABSTRACT

American foulbrood is a severe bacterial disease affecting larvae of the honeybee Apis mellifera and it is caused by Paenibacillus larvae larvae. The disease is present worldwide and cases have been reported in almost all the beekeeping regions of the five continents. During 2001 and 2002 we carried out a nationwide study to assess the presence and amount of P. l. larvae spores in honey samples from Uruguay, combining classic bacteriological, and molecular approaches. The distribution of P. l. larvae spores in honey of the whole country showed a clear pattern and may provide useful data for a control and prevention strategy of American foulbrood.


Subject(s)
Bees/parasitology , Gram-Positive Bacteria/physiology , Gram-Positive Bacterial Infections/epidemiology , Honey/microbiology , Animals , Polymerase Chain Reaction , Spores, Bacterial , Uruguay
SELECTION OF CITATIONS
SEARCH DETAIL
...