Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Elife ; 92020 11 05.
Article in English | MEDLINE | ID: mdl-33150866

ABSTRACT

Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the PAFAH1B1 (mouse: Pafah1b1) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of Pafah1b1 mutation on the cellular migration, morphophysiology, microcircuitry, and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes. We find that cell-autonomous mutations within interneurons disrupts morphophysiological development of PV+INTs and results in the emergence of a non-canonical 'intermediate spiking (IS)' subset of PV+INTs. We also find that now dominant IS/NFS cells are prone to entering depolarization block, causing them to temporarily lose the ability to initiate action potentials and control network excitation, potentially promoting seizures. Finally, single-cell nuclear RNAsequencing of PV+INTs revealed several misregulated genes related to morphogenesis, cellular excitability, and synapse formation.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Classical Lissencephalies and Subcortical Band Heterotopias/pathology , Hippocampus/cytology , Interneurons/metabolism , Microtubule-Associated Proteins/metabolism , Parvalbumins/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Animals , Electrophysiological Phenomena , Gene Expression Regulation/physiology , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics
2.
Elife ; 92020 06 19.
Article in English | MEDLINE | ID: mdl-32558643

ABSTRACT

Layering has been a long-appreciated feature of higher order mammalian brain structures but the extent to which it plays an instructive role in synaptic specification remains unknown. Here we examine the formation of synaptic circuitry under cellular heterotopia in hippocampal CA1, using a mouse model of the human neurodevelopmental disorder Type I Lissencephaly. We identify calbindin-expressing principal cells which are mispositioned under cellular heterotopia. Ectopic calbindin-expressing principal cells develop relatively normal morphological features and stunted intrinsic physiological features. Regarding network development, a connectivity preference for cholecystokinin-expressing interneurons to target calbindin-expressing principal cells is diminished. Moreover, in vitro gamma oscillatory activity is less synchronous across heterotopic bands and mutants are less responsive to pharmacological inhibition of cholecystokinin-containing interneurons. This study will aid not only in our understanding of how cellular networks form but highlight vulnerable cellular circuit motifs that might be generalized across disease states.


Subject(s)
Calbindins/metabolism , Classical Lissencephalies and Subcortical Band Heterotopias/physiopathology , Hippocampus/physiopathology , Interneurons/physiology , Pyramidal Cells/physiology , Animals , Cholecystokinin/metabolism , Disease Models, Animal , Female , Humans , Male , Mice
3.
Neuron ; 106(5): 842-854.e4, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32213321

ABSTRACT

Excitation in neural circuits must be carefully controlled by inhibition to regulate information processing and network excitability. During development, cortical inhibitory and excitatory inputs are initially mismatched but become co-tuned or balanced with experience. However, little is known about how excitatory-inhibitory balance is defined at most synapses or about the mechanisms for establishing or maintaining this balance at specific set points. Here we show how coordinated long-term plasticity calibrates populations of excitatory-inhibitory inputs onto mouse auditory cortical pyramidal neurons. Pairing pre- and postsynaptic activity induced plasticity at paired inputs and different forms of heterosynaptic plasticity at the strongest unpaired synapses, which required minutes of activity and dendritic Ca2+ signaling to be computed. Theoretical analyses demonstrated how the relative rate of heterosynaptic plasticity could normalize and stabilize synaptic strengths to achieve any possible excitatory-inhibitory correlation. Thus, excitatory-inhibitory balance is dynamic and cell specific, determined by distinct plasticity rules across multiple excitatory and inhibitory synapses.


Subject(s)
Action Potentials/physiology , Auditory Cortex/physiology , Excitatory Postsynaptic Potentials/physiology , Inhibitory Postsynaptic Potentials/physiology , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Animals , Calcium Signaling , Evoked Potentials , Long-Term Potentiation/physiology , Mice , Patch-Clamp Techniques , Synapses/physiology
4.
Neuron ; 96(1): 177-189.e7, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28957667

ABSTRACT

Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity.


Subject(s)
Models, Neurological , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Animals , Hippocampus/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Neocortex/physiology , Neural Inhibition/physiology
5.
Curr Biol ; 26(5): 593-604, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26877081

ABSTRACT

Aggression is a prevalent behavior in the animal kingdom that is used to settle competition for limited resources. Given the high risk associated with fighting, the central nervous system has evolved an active mechanism to modulate its expression. Lesioning the lateral septum (LS) is known to cause "septal rage," a phenotype characterized by a dramatic increase in the frequency of attacks. To understand the circuit mechanism of LS-mediated modulation of aggression, we examined the influence of LS input on the cells in and around the ventrolateral part of the ventromedial hypothalamus (VMHvl)-a region required for male mouse aggression. We found that the inputs from the LS inhibited the attack-excited cells but surprisingly increased the overall activity of attack-inhibited cells. Furthermore, optogenetic activation of the projection from LS cells to the VMHvl terminated ongoing attacks immediately but had little effect on mounting. Thus, LS projection to the ventromedial hypothalamic area represents an effective pathway for suppressing male aggression.


Subject(s)
Aggression , Hypothalamus, Middle/physiology , Septal Nuclei/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Optogenetics , Sexual Behavior, Animal
6.
Mol Brain ; 8: 46, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26260133

ABSTRACT

BACKGROUND: A variety of pain conditions have been found to be associated with depressed mood in clinical studies. Depression-like behaviors have also been described in animal models of persistent or chronic pain. In rodent chronic neuropathic pain models, elevated levels of GluA1 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the nucleus accumbens (NAc) have been found to inhibit depressive symptoms. However, the effect of reversible post-surgical pain or inflammatory pain on affective behaviors such as depression has not been well characterized in animal models. Neither is it known what time frame is required to elicit AMPA receptor subunit changes in the NAc in various pain conditions. RESULTS: In this study, we compared behavioral and biochemical changes in three pain models: the paw incision (PI) model for post-incisional pain, the Complete Freund's Adjuvant (CFA) model for persistent but reversible inflammatory pain, and the spared nerve injury (SNI) model for chronic postoperative neuropathic pain. In all three models, rats developed depressive symptoms that were concurrent with the presentation of sensory allodynia. GluA1 levels at the synapses of the NAc, however, differed in these three models. The level of GluA1 subunits of AMPA-type receptors at NAc synapses was not altered in the PI model. GluA1 levels were elevated in the CFA model after a period (7 d) of persistent pain, leading to the formation of GluA2-lacking AMPA receptors. As pain symptoms began to resolve, however, GluA1 levels returned to baseline. Meanwhile, in the SNI model, in which pain persisted beyond 14 days, GluA1 levels began to rise after pain became persistent and remained elevated. In addition, we found that blocking GluA2-lacking AMPA receptors in the NAc further decreased the depressive symptoms only in persistent pain models. CONCLUSION: Our study shows that while both short-term and persistent pain can trigger depression-like behaviors, GluA1 upregulation in the NAc likely represents a unique adaptive response to minimize depressive symptoms in persistent pain states.


Subject(s)
Chronic Pain/complications , Nucleus Accumbens/metabolism , Protein Subunits/metabolism , Receptors, AMPA/metabolism , Animals , Behavior, Animal , Depression/etiology , Depression/metabolism , Freund's Adjuvant , Inflammation/complications , Male , Neuralgia/complications , Nucleus Accumbens/pathology , Protein Transport , Rats , Rats, Sprague-Dawley , Synapses/metabolism
7.
Neuron ; 86(2): 514-28, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25843405

ABSTRACT

Synapses are plastic and can be modified by changes in spike timing. Whereas most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ∼10 ms. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation and adjusted the excitatory-inhibitory ratio of events paired with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance.


Subject(s)
Action Potentials/physiology , Auditory Cortex/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Action Potentials/drug effects , Animals , GABA Antagonists/pharmacology , In Vitro Techniques , Long-Term Potentiation/physiology , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Presynaptic Terminals/physiology , Receptors, N-Methyl-D-Aspartate/metabolism
8.
J Neurosci ; 35(13): 5247-59, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25834050

ABSTRACT

Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation.


Subject(s)
Neural Pathways/physiology , Neuralgia/physiopathology , Neuralgia/therapy , Nucleus Accumbens/physiology , Prefrontal Cortex/physiology , Animals , Behavior, Animal/physiology , Male , Nucleus Accumbens/cytology , Optogenetics , Pain Measurement , Prefrontal Cortex/cytology , Rats
9.
Nature ; 520(7548): 499-504, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25874674

ABSTRACT

Oxytocin is important for social interactions and maternal behaviour. However, little is known about when, where and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behaviour in female mice by enhancing auditory cortical pup call responses. Retrieval behaviour required the left but not right auditory cortex, was accelerated by oxytocin in the left auditory cortex, and oxytocin receptors were preferentially expressed in the left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally precise excitatory and inhibitory responses in the left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing.


Subject(s)
Auditory Cortex/physiology , Maternal Behavior/physiology , Neural Inhibition/physiology , Oxytocin/metabolism , Acoustic Stimulation , Animals , Animals, Newborn , Auditory Cortex/cytology , Auditory Perception/physiology , Evoked Potentials, Auditory , Female , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Receptors, Oxytocin/metabolism , Sexual Abstinence , Vocalization, Animal
10.
Exp Neurol ; 269: 102-19, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25864929

ABSTRACT

In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility.


Subject(s)
Menstrual Cycle/drug effects , Pilocarpine/pharmacology , Status Epilepticus/drug therapy , Animals , Disease Models, Animal , Electroencephalography/methods , Hippocampus/drug effects , Hippocampus/physiopathology , Kainic Acid/pharmacology , Male , Rats, Sprague-Dawley , Sex Factors , Status Epilepticus/physiopathology
11.
J Neurosci ; 33(48): 19034-44, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24285907

ABSTRACT

Depression is a salient emotional feature of chronic pain. Depression alters the pain threshold and impairs functional recovery. To date, however, there has been limited understanding of synaptic or circuit mechanisms that regulate depression in the pain state. Here, we demonstrate that depression-like behaviors are induced in a rat model of chronic neuropathic pain. Using this model, we show that chronic pain selectively increases the level of GluA1 subunits of AMPA-type glutamate receptors at the synapses of the nucleus accumbens (NAc), a key component of the brain reward system. We find, in addition, that this increase in GluA1 levels leads to the formation of calcium-permeable AMPA receptors (CPARs). Surprisingly, pharmacologic blockade of these CPARs in the NAc increases depression-like behaviors associated with pain. Consistent with these findings, an AMPA receptor potentiator delivered into the NAc decreases pain-induced depression. These results show that transmission through CPARs in the NAc represents a novel molecular mechanism modulating the depressive symptoms of pain, and thus CPARs may be a promising therapeutic target for the treatment of pain-induced depression. More generally, these findings highlight the role of central glutamate signaling in pain states and define the brain reward system as an important region for the regulation of depressive symptoms of pain.


Subject(s)
Behavior, Animal/physiology , Calcium/metabolism , Depression/physiopathology , Depression/psychology , Neuralgia/physiopathology , Neuralgia/psychology , Nucleus Accumbens/physiology , Receptors, AMPA/physiology , Animals , Blotting, Western , Chronic Disease , Cold Temperature , Electrophysiological Phenomena/physiology , Male , Microinjections , Motor Activity/physiology , Pain Measurement/drug effects , Physical Stimulation , Rats , Rats, Sprague-Dawley , Receptors, AMPA/biosynthesis , Receptors, AMPA/genetics , Subcellular Fractions/physiology , Sucrose , Swimming/psychology
12.
J Neurosci ; 33(14): 6123-32, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23554493

ABSTRACT

The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.


Subject(s)
Neurons/metabolism , Receptors, AMPA/metabolism , Sucrose/administration & dosage , Sweetening Agents/administration & dosage , Animals , Carrier Proteins , Conditioning, Operant/physiology , Dopamine beta-Hydroxylase/metabolism , Excitatory Postsynaptic Potentials/drug effects , In Vitro Techniques , Locomotion/physiology , Male , Microscopy, Electron, Transmission , Neurons/drug effects , Nucleus Accumbens/cytology , Phosphoproteins/metabolism , Post-Synaptic Density/metabolism , Post-Synaptic Density/ultrastructure , Protein Transport/drug effects , Rats , Rats, Sprague-Dawley , Subcellular Fractions/metabolism , Synaptosomes/metabolism , Synaptosomes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...