Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34373328

ABSTRACT

During the last interglacial (LIG) period, global mean sea level (GMSL) was higher than at present, likely driven by greater high-latitude insolation. Past sea-level estimates require elevation measurements and age determination of marine sediments that formed at or near sea level, and those elevations must be corrected for glacial isostatic adjustment (GIA). However, this GIA correction is subject to uncertainties in the GIA model inputs, namely, Earth's rheology and past ice history, which reduces precision and accuracy in estimates of past GMSL. To better constrain the GIA process, we compare our data and existing LIG sea-level data across the Bahamian archipelago with a suite of 576 GIA model predictions. We calculated weights for each GIA model based on how well the model fits spatial trends in the regional sea-level data and then used the weighted GIA corrections to revise estimates of GMSL during the LIG. During the LIG, we find a 95% probability that global sea level peaked at least 1.2 m higher than today, and it is very unlikely (5% probability) to have exceeded 5.3 m. Estimates increase by up to 30% (decrease by up to 20%) for portions of melt that originate from the Greenland ice sheet (West Antarctic ice sheet). Altogether, this work suggests that LIG GMSL may be lower than previously assumed.

2.
New Phytol ; 223(4): 1844-1855, 2019 09.
Article in English | MEDLINE | ID: mdl-31081929

ABSTRACT

Fossil plant gas-exchange-based CO2 reconstructions use carbon (C) assimilation rates of extant plant species as substitutes for assimilation rates of fossil plants. However, assumptions in model species adoption can lead to systematic error propagation. We used a dataset of c. 2500 extant species to investigate the role of phylogenetic relatedness and ecology in determining C assimilation, an essential variable in gas-exchange-based CO2 models. We evaluated the effect on random and systematic error propagation in atmospheric CO2 caused by adopting different model species. Phylogenetic relatedness, growth form, and solar exposure are important predictors of C assimilation rate. CO2 reconstructions that apply C assimilation rates from modern species based solely on phylogenetic relatedness to fossil species can result in CO2 estimates that are systematically biased by a factor of > 2. C assimilation rates used in CO2 reconstructions should be determined by averaging assimilation rates of modern plant species that are (1) in the same family and (2) have a similar habit and habitat as the fossil plant. In addition, systematic bias potential and random error propagation are greatly reduced when CO2 is reconstructed from multiple fossil plant species with different modern relatives at the same site.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/metabolism , Carbon/metabolism , Plants/metabolism , Phylogeny
3.
Nat Commun ; 10(1): 1272, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894523

ABSTRACT

Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability. Here we report a new synchronization of terrestrial, marine, and ice-core records, which allows the first quantitative determination of the response time of North Atlantic climate to changes in high-latitude NADW formation rate during the last deglaciation. Using a continuous record of deep water ventilation from the Nordic Seas, we identify a ∼400-year lead of changes in high-latitude NADW formation ahead of abrupt climate changes recorded in Greenland ice cores at the onset and end of the Younger Dryas stadial, which likely occurred in response to gradual changes in temperature- and wind-driven freshwater transport. We suggest that variations in Nordic Seas deep-water circulation are precursors to abrupt climate changes and that future model studies should address this phasing.

5.
Proc Natl Acad Sci U S A ; 114(46): 12144-12149, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087331

ABSTRACT

As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

6.
Sci Rep ; 2: 609, 2012.
Article in English | MEDLINE | ID: mdl-22934132

ABSTRACT

High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index (U37(K)) with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS). The proxy-to-proxy (PTP) method exploits two distinct calibrations: the in situ calibration of U37(K) to lake water temperature and the calibration of scanning VIS-RS data to down core U37(K) data. Using this approach, we produced a quantitative temperature record that is longer and has 5 times higher sampling resolution than the original U37(K) time series, thereby allowing detection of temperature variability in frequency bands characteristic of the AMO over the past 7,000 years.


Subject(s)
Climate , Geologic Sediments/chemistry , Calibration , Geology
7.
Proc Natl Acad Sci U S A ; 108(24): 9765-9, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21628586

ABSTRACT

West Greenland has had multiple episodes of human colonization and cultural transitions over the past 4,500 y. However, the explanations for these large-scale human migrations are varied, including climatic factors, resistance to adaptation, economic marginalization, mercantile exploration, and hostile neighborhood interactions. Evaluating the potential role of climate change is complicated by the lack of quantitative paleoclimate reconstructions near settlement areas and by the relative stability of Holocene temperature derived from ice cores atop the Greenland ice sheet. Here we present high-resolution records of temperature over the past 5,600 y based on alkenone unsaturation in sediments of two lakes in West Greenland. We find that major temperature changes in the past 4,500 y occurred abruptly (within decades), and were coeval in timing with the archaeological records of settlement and abandonment of the Saqqaq, Dorset, and Norse cultures, which suggests that abrupt temperature changes profoundly impacted human civilization in the region. Temperature variations in West Greenland display an antiphased relationship to temperature changes in Ireland over centennial to millennial timescales, resembling the interannual to multidecadal temperature seesaw associated with the North Atlantic Oscillation.


Subject(s)
Climate Change , Climate , Ecosystem , Emigration and Immigration , Carbon/analysis , Geography , Geologic Sediments/chemistry , Greenland , Humans , Ice Cover , Ireland , Models, Theoretical , Population Dynamics , Radiometric Dating , Seawater/chemistry , Temperature , Time Factors , Water Movements
8.
Anal Chem ; 79(9): 3430-5, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17391004

ABSTRACT

Hydrogen isotope ratios (2H/H or D/H) of long-chain unsaturated ketones (alkenones) preserved in lake and marine sediments hold great promise for paleoclimate studies. However, compound-specific hydrogen isotope analysis of individual alkenones has not been possible due to chromatographic coelution of alkenones with the same carbon chain length but different numbers of double bonds. Published studies have only reported the deltaD values of the mixture of coeluting alkenones. We developed an efficient procedure to isolate individual alkenones based on double-bond numbers using silica gel impregnated with silver nitrate. The chromatographic procedure is simple, inexpensive, and highly reproducible, offers 87-100% sample recovery, and allows for the first time hydrogen isotopic measurement on individual alkenones. deltaD values of specific di-, tri- and tetraunsaturated C37 alkenones produced by an Emiliania huxleyi culture, as well as those isolated from Greenland lake sediments, differ consecutively by 43-65 per thousand. These findings suggest that alkenones with different numbers of carbon-carbon double bonds express significantly different deltaD values and that coelution of different alkenones may lead to erroneous source water deltaD reconstructions. Our alkenone isolation approach opens a new avenue for paleoclimate reconstructions using hydrogen isotope ratios of individual alkenones.

SELECTION OF CITATIONS
SEARCH DETAIL
...