Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Proc Natl Acad Sci U S A ; 117(32): 19538-19543, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32723827

ABSTRACT

The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. It was computationally reconstructed for the first time to the level of all individual folia from multicontrast high-resolution postmortem MRI scans. Its total shrinkage-corrected surface area (1,590 cm2) was larger than expected or previously reported, equal to 78% of the total surface area of the human neocortex. The unfolded and flattened surface comprised a narrow strip 10 cm wide but almost 1 m long. By applying the same methods to the neocortex and cerebellum of the macaque monkey, we found that its cerebellum was relatively much smaller, approximately 33% of the total surface area of its neocortex. This suggests a prominent role for the cerebellum in the evolution of distinctively human behaviors and cognition.


Subject(s)
Cerebellum/anatomy & histology , Neocortex/anatomy & histology , Animals , Cerebellar Cortex/anatomy & histology , Cerebellar Cortex/diagnostic imaging , Cerebellum/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Macaca , Magnetic Resonance Imaging , Neocortex/diagnostic imaging
2.
J Neurosci ; 40(10): 2094-2107, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31949106

ABSTRACT

The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species: vervets (Chlorocebus aethiops), rhesus macaque (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis), all male. The simian-human differences in proportional frontal tract volume were significant for projection, commissural, and both intralobar and interlobar association tracts. Among the long association tracts, the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing and social behaviour. In addition, we found that a nonfrontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some nonfrontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution.SIGNIFICANCE STATEMENT Tractography is a unique tool to map white matter connections in the brains of different species, including humans. This study shows that humans have a greater proportion of frontal lobe connections compared with monkeys, when normalized by total brain white matter volume. In particular, tracts associated with language and higher cognitive functions are disproportionally larger in humans compared with monkeys, whereas other tracts associated with emotional processing are either the same or disproportionally smaller. This supports the hypothesis that the emergence of higher cognitive functions in humans is associated with increased extended frontal connectivity, allowing human brains more efficient cross talk between frontal and other high-order associative areas of the temporal, parietal, and occipital lobes.


Subject(s)
Frontal Lobe/anatomy & histology , Neural Pathways/anatomy & histology , White Matter/anatomy & histology , Animals , Brain Mapping/methods , Chlorocebus aethiops , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted , Macaca fascicularis , Macaca mulatta , Male , Species Specificity
3.
Cortex ; 97: 339-357, 2017 12.
Article in English | MEDLINE | ID: mdl-29157936

ABSTRACT

The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic of the human species, such as mathematical cognition, semantic and pragmatic aspects of language, and abstract thinking. Despite its importance, a comprehensive comparison of human and simian intraparietal networks is missing. In this study, we used diffusion imaging tractography to reconstruct the major intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only. Our findings suggest a consistent pattern of intralobar parietal connections between humans and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans.


Subject(s)
Parietal Lobe/anatomy & histology , White Matter/anatomy & histology , Animals , Brain Mapping , Diffusion Tensor Imaging/methods , Haplorhini , Humans , Image Processing, Computer-Assisted , Neural Pathways/anatomy & histology
4.
Brain Struct Funct ; 222(3): 1331-1349, 2017 04.
Article in English | MEDLINE | ID: mdl-27469273

ABSTRACT

Through its connectivity with the rest of the brain, a cortical region constrains its function. The advent of MRI methods such as diffusion-weighted imaging tractography allows us to estimate whole-brain anatomical connectivity at multiple seed regions in the same subject. This makes it possible to use data-driven techniques to define the spatial boundaries between adjacent brain regions characterized by sharply different connectivity. This approach has recently been employed to identify connectivity-based subdivisions of the human frontal lobe bearing an apparent similarity with cytoarchitectural subdivisions. However, the spatial relationships between the boundaries of cytoarchitectonic areas and tractography-based subdivisions remain largely hypothetical. In this work we present the first tractography-based parcellation of the frontal lobes in macaques. Diffusion-weighted data for tractography were acquired on ex vivo macaque brain specimens, ruling out the presence of various sources of noise present in acquisitions on living subjects. An unsupervised multivariate technique consistently showed the presence of 11 tractography-driven subdivisions in the frontal lobe across specimens. Comparison with several microstructural atlases suggested a heterogeneous relationship of these subdivisions with cytoarchitectonic areas: caudal frontal, medial and orbitofronal subdivisions featured the most consistent relationship between modalities, while lateral prefrontal subdivisions mostly differed from atlas-based cytoarchitectonic subdivisions. Other subdivisions were reminiscent of the organization of anatomical projections of the caudal motor cortex, as well as of the intrinsic orbitofrontal networks. Hence, although some cytoarchitectural and connectivity-based subdivisions share a similar spatial distribution, they should not necessarily be considered as equivalent. Instead, connectivity-based subdivisions appear to provide complementary information on the spatial organization of anatomical connectivity.


Subject(s)
Brain Mapping , Frontal Lobe/anatomy & histology , Neural Pathways/physiology , Animals , Diffusion Tensor Imaging , Frontal Lobe/diagnostic imaging , Image Processing, Computer-Assisted , Macaca fascicularis , Male , Nerve Net , Neural Pathways/diagnostic imaging , Principal Component Analysis
5.
BMC Neurosci ; 16: 91, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26666889

ABSTRACT

BACKGROUND: Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. RESULTS: An improved iterative self-organizing data analysis algorithm was used to combine T2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P < 0.001). The distribution of signatures between brains with permanent and transient occlusions varied significantly between groups (P < 0.001). Qualitative comparisons with histopathology revealed that these signatures represented regions with different histopathology. Two signatures identified areas of progressive injury marked by severe necrosis and the presence of gitter cells. Another signature identified less severe but pronounced neuronal and axonal degeneration, while the other signatures depicted tissue remodeling with vascular proliferation and astrogliosis. CONCLUSION: These exploratory results demonstrate the potential of temporally and spatially combined voxel-based methods to generate tissue signatures that may correlate with distinct histopathological features. The identification of distinct ischemic MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting.


Subject(s)
Algorithms , Brain/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Stroke/pathology , Acute Disease , Animals , Chronic Disease , Diffusion Tensor Imaging , Disease Models, Animal , Disease Progression , Infarction, Middle Cerebral Artery , Macaca fascicularis , Male , Retrospective Studies
6.
Cereb Cortex ; 25(11): 4299-309, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25787833

ABSTRACT

Diffusion magnetic resonance imaging (MRI) allows for the noninvasive in vivo examination of anatomical connections in the human brain, which has an important role in understanding brain function. Validation of this technique is vital, but has proved difficult due to the lack of an adequate gold standard. In this work, the macaque visual system was used as a model as an extensive body of literature of in vivo and postmortem tracer studies has established a detailed understanding of the underlying connections. We performed probabilistic tractography on high angular resolution diffusion imaging data of 2 ex vivo, in vitro macaque brains. Comparisons were made between identified connections at different thresholds of probabilistic connection "strength," and with various tracking optimization strategies previously proposed in the literature, and known connections from the detailed visual system wiring map described by Felleman and Van Essen (1991; FVE91). On average, 74% of connections that were identified by FVE91 were reproduced by performing the most successfully optimized probabilistic diffusion MRI tractography. Further comparison with the results of a more recent tracer study ( Markov et al. 2012) suggests that the fidelity of tractography in estimating the presence or absence of interareal connections may be greater than this.


Subject(s)
Brain Mapping , Neural Pathways/anatomy & histology , Visual Cortex/anatomy & histology , Algorithms , Animals , Diffusion Magnetic Resonance Imaging , Imaging, Three-Dimensional , Macaca mulatta , ROC Curve , Reproducibility of Results
7.
Neuroimage ; 83: 200-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23831413

ABSTRACT

The brain demonstrates spontaneous low-frequency (<0.1 Hz) cerebral blood flow (CBF) fluctuations, measurable by resting state functional MRI (rs-fMRI). Ultra small superparamagnetic iron oxide particles have been shown to enhance task-based fMRI signals (cerebral blood volume fMRI or CBV-fMRI), compared to the BOLD effect, by a factor of ≈2.5 at 3 T in primates and humans. We evaluated the use of ferumoxytol for steady state, resting state FMRI (CBV-rs-fMRI) and relative cerebral blood volume (rCBV) mapping, at 3T, in healthy volunteers. All standard resting state networks (RSNs) were identified in all subjects. On average the RSN Z statistics (MELODIC independent components) and volumes of the visual and default mode (DMN) networks were comparable. rCBV values were averaged for the visual (Vis) and DMN networks and correlated with the corresponding DMN and visual network Z statistics. There was a negative correlation between the rCBV and the Z statistics for the DMN, for both BOLD and CBV-rs-fMRI contrast (R2=0.63, 0.76). A similar correlation was not found for the visual network. Short repetition time rs-fMRI data were Fourier transformed to evaluate the effect of ferumoxytol on cardiac and respiratory fluctuations in the brain rs-BOLD, CBV signals. Cardiac and respiratory fluctuations decreased to baseline within large vessels post ferumoxytol. Robust rs-fMRI and CBV mapping is possible in normal human brain.


Subject(s)
Blood Volume Determination/methods , Blood Volume/physiology , Brain Mapping/methods , Brain/physiology , Cerebrovascular Circulation/physiology , Ferrosoferric Oxide/administration & dosage , Magnetic Resonance Imaging/methods , Blood Volume/drug effects , Brain/drug effects , Cerebrovascular Circulation/drug effects , Female , Humans , Male , Reference Values , Rest/physiology , Young Adult
8.
Hum Brain Mapp ; 34(2): 327-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23169482

ABSTRACT

Water diffusion magnetic resonance imaging (dMRI) is a powerful tool for studying biological tissue microarchitectures in vivo. Recently, there has been increased effort to develop quantitative dMRI methods to probe both length scale and orientation information in diffusion media. Diffusion spectrum imaging (DSI) is one such approach that aims to resolve such information based on the three-dimensional diffusion propagator at each voxel. However, in practice, only the orientation component of the propagator function is preserved when deriving the orientation distribution function. Here, we demonstrate how a straightforward extension of the linear spherical deconvolution (SD) model can be used to probe tissue orientation structures over a range (or "spectrum") of length scales with minimal assumptions on the underlying microarchitecture. Using high b-value Cartesian q-space data on a rat brain tissue sample, we demonstrate how this "restriction spectrum imaging" (RSI) model allows for separating the volume fraction and orientation distribution of hindered and restricted diffusion, which we argue stems primarily from diffusion in the extraneurite and intraneurite water compartment, respectively. Moreover, we demonstrate how empirical RSI estimates of the neurite orientation distribution and volume fraction capture important additional structure not afforded by traditional DSI or fixed-scale SD-like reconstructions, particularly in gray matter. We conclude that incorporating length scale information in geometric models of diffusion offers promise for advancing state-of-the-art dMRI methods beyond white matter into gray matter structures while allowing more detailed quantitative characterization of water compartmentalization and histoarchitecture of healthy and diseased tissue.


Subject(s)
Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Algorithms , Animals , Axons/physiology , Body Water/physiology , Brain Mapping , Cell Membrane/physiology , Cerebellum/anatomy & histology , Cerebellum/cytology , Cerebral Cortex/anatomy & histology , Cerebral Cortex/cytology , Corpus Callosum/physiology , Diffusion Tensor Imaging/instrumentation , Globus Pallidus/anatomy & histology , Globus Pallidus/cytology , Image Processing, Computer-Assisted , Models, Anatomic , Monte Carlo Method , Neostriatum/anatomy & histology , Neostriatum/cytology , Neurites/physiology , Neurites/ultrastructure , Rats , Rats, Sprague-Dawley , Signal Processing, Computer-Assisted
9.
Hum Brain Mapp ; 33(9): 2005-34, 2012 Sep.
Article in English | MEDLINE | ID: mdl-21761507

ABSTRACT

The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions.


Subject(s)
Cerebral Cortex/physiology , Neural Pathways/physiology , Adult , Brain Mapping , Cerebral Cortex/anatomy & histology , Diffusion Tensor Imaging , Functional Laterality , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Models, Statistical , Nerve Fibers/physiology , Neural Pathways/anatomy & histology
10.
Open Neuroimag J ; 5: 153-9, 2011.
Article in English | MEDLINE | ID: mdl-22253657

ABSTRACT

Dynamic diffusion MRI was used to visualize hyperacute stroke formation in the brain of a cynomolgus macaque. Under fluoroscopic guidance, a microcatheter was placed into the middle cerebral artery (MCA). The animal was immediately transferred to a 1.5T clinical scanner. Dynamic T2-weighted imaging during bolus injection of Oxygen-17 enriched water through the microcatheter mapped out the territory perfused by the MCA segment. Serial diffusion measurements were made using diffusion-weighted echo-planar imaging, with a temporal resolution of 15 seconds, during injection of a glue embolus into the microcatheter. The apparent diffusion coefficient declined within the lesion core. A wave of transient diffusion decline spread through peripheral uninvolved brain immediately following stroke induction. The propagation speed and pattern is consistent with spreading peri-infarct depolarizations (PID). The detection of PIDs following embolic stroke in a higher nonhuman primate brain supports the hypothesis that spreading depressions may occur following occlusive stroke in humans.

11.
Proc Natl Acad Sci U S A ; 107(34): 15246-51, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20696904

ABSTRACT

Changes in neuronal activity are accompanied by the release of vasoactive mediators that cause microscopic dilation and constriction of the cerebral microvasculature and are manifested in macroscopic blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals. We used two-photon microscopy to measure the diameters of single arterioles and capillaries at different depths within the rat primary somatosensory cortex. These measurements were compared with cortical depth-resolved fMRI signal changes. Our microscopic results demonstrate a spatial gradient of dilation onset and peak times consistent with "upstream" propagation of vasodilation toward the cortical surface along the diving arterioles and "downstream" propagation into local capillary beds. The observed BOLD response exhibited the fastest onset in deep layers, and the "initial dip" was most pronounced in layer I. The present results indicate that both the onset of the BOLD response and the initial dip depend on cortical depth and can be explained, at least in part, by the spatial gradient of delays in microvascular dilation, the fastest response being in the deep layers and the most delayed response in the capillary bed of layer I.


Subject(s)
Oxygen/blood , Somatosensory Cortex/blood supply , Animals , Arterioles/anatomy & histology , Arterioles/physiology , Capillaries/anatomy & histology , Capillaries/physiology , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Microcirculation/physiology , Microscopy, Fluorescence, Multiphoton , Rats , Rats, Sprague-Dawley , Vasodilation/physiology
12.
Neuroimage ; 51(2): 555-64, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20206702

ABSTRACT

Studies in monkeys show clear anatomical and functional distinctions among networks connecting with subregions within the prefrontal cortex. Three such networks are centered on lateral orbitofrontal cortex, medial frontal and cingulate cortex, and lateral prefrontal cortex and all have been identified with distinct cognitive roles. Although these areas differ in a number of their cortical connections, some of the first anatomical evidence for these networks came from tracer studies demonstrating their distinct patterns of connectivity with the mediodorsal (MD) nucleus of the thalamus. Here, we present evidence for a similar topography of MD thalamus prefrontal connections, using non-invasive imaging and diffusion tractography (DWI-DT) in human and macaque. DWI-DT suggested that there was a high probability of interconnection between medial MD and lateral orbitofrontal cortex, between caudodorsal MD and medial frontal/cingulate cortex, and between lateral MD and lateral prefrontal cortex, in both species. Within the lateral prefrontal cortex a dorsolateral region (the principal sulcus in the macaque and middle frontal gyrus in the human) was found to have a high probability of interconnection with the MD region between the regions with a high probability of interconnection with other parts of the lateral prefrontal cortex and with the lateral orbitofrontal cortex. In addition to suggesting that the thalamic connectivity in the macaque is a good guide to human prefrontal cortex, and therefore that there are likely to be similarities in the cognitive roles played by the prefrontal areas in both species, the present results are also the first to provide insight into the topography of projections of an individual thalamic nucleus in the human brain.


Subject(s)
Brain Mapping , Neural Pathways/anatomy & histology , Prefrontal Cortex/anatomy & histology , Thalamus/anatomy & histology , Adult , Animals , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Macaca , Male , Young Adult
13.
PLoS One ; 5(1): e8595, 2010 Jan 07.
Article in English | MEDLINE | ID: mdl-20062822

ABSTRACT

Diffusion MRI (dMRI) is widely used to measure microstructural features of brain white matter, but commonly used dMRI measures have limited capacity to resolve the orientation structure of complex fiber architectures. While several promising new approaches have been proposed, direct quantitative validation of these methods against relevant histological architectures remains missing. In this study, we quantitatively compare neuronal fiber orientation distributions (FODs) derived from ex vivo dMRI data against histological measurements of rat brain myeloarchitecture using manual recordings of individual myelin stained fiber orientations. We show that accurate FOD estimates can be obtained from dMRI data, even in regions with complex architectures of crossing fibers with an intrinsic orientation error of approximately 5-6 degrees in these regions. The reported findings have implications for both clinical and research studies based on dMRI FOD measures, and provide an important biological benchmark for improved FOD reconstruction and fiber tracking methods.


Subject(s)
Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Animals , Rats
14.
J Neurosci Methods ; 171(2): 207-13, 2008 Jun 30.
Article in English | MEDLINE | ID: mdl-18462802

ABSTRACT

Magnetic resonance microscopy (microMRI) is becoming an important tool for non-destructive analysis of fixed brain tissue. However, unlike MRI, X-ray computed tomography (CT) scans show little native soft tissue contrast. In this paper, we explored the use of contrast enhanced (brains immersion stained in iodinated CT contrast media) micro-CT (microCT) for high resolution 3D imaging of fixed normal and pathological brains, compared to microMRI and standard histopathology. An optimum iodine concentration of 0.27 M resulted in excellent contrast between gray and white matter in normal brain and a wide range of anatomical structures were identified. In glioma bearing mouse brains, there was clear deliniation of tumor margin which closely matched that seen on histopathology sections. microCT tumor volume was strongly correlated with histopathology volume. Our data suggests that microCT image contrast in the immersion-stained brains is related to axonal density and myelin content. Compared to traditional histopathology, our microCT approach is relatively rapid and less labor intensive. In addition, compared to microMRI, microCT is robust and requires much lower equipment and maintenance costs. For simple measurements, such as tumor volume and non-destructive postmortem brain screening, microCT may prove to be a valuable alternative to standard histopathology or microMRI.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Imaging, Three-Dimensional , Postmortem Changes , Tomography, X-Ray Computed/methods , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Rabbits
15.
Dev Neurosci ; 30(4): 262-75, 2008.
Article in English | MEDLINE | ID: mdl-17962716

ABSTRACT

Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies.


Subject(s)
Brain/anatomy & histology , Brain/growth & development , Diffusion Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Agenesis of Corpus Callosum , Animals , Brain/abnormalities , Brain Mapping/methods , Corpus Callosum/anatomy & histology , Corpus Callosum/growth & development , Female , Fornix, Brain/abnormalities , Fornix, Brain/anatomy & histology , Fornix, Brain/growth & development , Gyrus Cinguli/abnormalities , Gyrus Cinguli/anatomy & histology , Gyrus Cinguli/growth & development , Male , Nerve Fibers , Rabbits
16.
J Magn Reson Imaging ; 26(4): 1112-6, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17896395

ABSTRACT

PURPOSE: To study the spontaneous low-frequency blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal fluctuations during hyperacute focal cerebral ischemia. MATERIALS AND METHODS: A stroke model in nonhuman primates (macaques) was used in this study. Spontaneous fluctuations were recorded using a series of gradient-recalled echo (GRE) echo-planar imaging (EPI) images. Fast Fourier transformation (FFT) was performed on the serial EPI data to calculate the frequency and magnitude of the spontaneous fluctuations. Diffusion tensor imaging (DTI) and perfusion-weighted imaging (PWI) were preformed to detect the ischemic lesion. RESULTS: The frequency of these fluctuations decreased in the periinfarct tissue in the ipsilateral hemisphere, while their magnitude increased. This area of abnormal signal fluctuations often extended beyond the hyperacute diffusion/perfusion abnormality. CONCLUSION: This study suggests that measurement of the spontaneous fMRI signal fluctuations provides different information than is available from diffusion/perfusion or T2-weighted MRI.


Subject(s)
Brain Ischemia/diagnosis , Brain Ischemia/pathology , Magnetic Resonance Imaging/methods , Acute Disease , Animals , Brain/pathology , Diffusion , Echo-Planar Imaging/methods , Fourier Analysis , Ischemia/pathology , Macaca , Male , Perfusion , Primates , Reproducibility of Results , Time Factors
17.
Neuroimage ; 36(1): 64-8, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17433879

ABSTRACT

There have been numerous high resolution diffusion tensor imaging studies in fixed animal brains, but relatively few studies in human brains. While animal tissues are generally fixed pre-mortem or directly postmortem, this is not possible for human tissue, therefore there is always some delay between death and tissue fixation. The elapsed time between death and tissue fixation, the postmortem interval (PMI), will most likely adversely affect the tissue's diffusion properties. We studied the effects of PMI on the diffusion properties of rodent brain. Eight mice were euthanized and the brains (kept in the skull) were placed in formalin at PMIs of 0, 1, 4 and 14 days. Post fixation they were placed in a solution of GdDTPA and phosphate buffered saline. Brains were scanned with a 3D EPI DTI sequence at 4.7T. DTI data were processed to generate apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps. DTI tractography was also performed. The temporal changes in regional ADC and FA values were analyzed statistically using a one-way ANOVA, followed by individual Student's T-tests. Regional FA and ADC of gray and white matter decreased significantly with time (p<0.05). DTI tractography showed a decrease in the number and coherence of reconstructed fiber pathways between PMIs 0 and 14. Elapsed time between death and tissue fixation has a major effect upon the brain's diffusion properties and should be born in mind when interpreting fixed brain DTI.


Subject(s)
Brain/pathology , Diffusion Magnetic Resonance Imaging , Nerve Fibers/pathology , Nerve Net/pathology , Postmortem Changes , Tissue Fixation , Animals , Anisotropy , Corpus Callosum/pathology , Dominance, Cerebral/physiology , Male , Mice , Reproducibility of Results
18.
J Biomed Opt ; 12(1): 014033, 2007.
Article in English | MEDLINE | ID: mdl-17343508

ABSTRACT

We describe a near-infrared spectroscopy (NIRS) method to noninvasively measure relative changes in the pulsate components of cerebral blood flow (pCBF) and volume (pCBV) from the shape of heartbeat oscillations. We present a model that is used and data to show the feasibility of the method. We use a continuous-wave NIRS system to measure the arterial oscillations originating in the brains of piglets. Changes in the animals' CBF are induced by adding CO(2) to the breathing gas. To study the influence of scalp on our measurements, comparative, invasive measurements are performed on one side of the head simultaneously with noninvasive measurements on the other side. We also did comparative measurements of CBF using a laser Doppler system to validate the results of our method. The results indicate that for sufficient source-detector separation, the signal contribution of the scalp is minimal and the measurements are representative of the cerebral hemodynamics. Moreover, good correlation between the results of the laser Doppler system and the NIRS system indicate that the presented method is capable of measuring relative changes in CBF. Preliminary results show the potential of this NIRS method to measure pCBF and pCBV relative changes in neonatal pigs.


Subject(s)
Blood Flow Velocity/physiology , Cerebral Arteries/physiology , Cerebrovascular Circulation/physiology , Diagnosis, Computer-Assisted/methods , Oscillometry/methods , Pulsatile Flow/physiology , Spectrophotometry, Infrared/methods , Algorithms , Animals , Biological Clocks/physiology , Computer Simulation , Models, Cardiovascular , Reproducibility of Results , Sensitivity and Specificity , Swine
19.
Brain ; 130(Pt 3): 630-53, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17293361

ABSTRACT

Understanding the long association pathways that convey cortical connections is a critical step in exploring the anatomic substrates of cognition in health and disease. Diffusion tensor imaging (DTI) is able to demonstrate fibre tracts non-invasively, but present approaches have been hampered by the inability to visualize fibres that have intersecting trajectories (crossing fibres), and by the lack of a detailed map of the origins, course and terminations of the white matter pathways. We therefore used diffusion spectrum imaging (DSI) that has the ability to resolve crossing fibres at the scale of single MRI voxels, and identified the long association tracts in the monkey brain. We then compared the results with available expositions of white matter pathways in the monkey using autoradiographic histological tract tracing. We identified 10 long association fibre bundles with DSI that match the observations in the isotope material: emanating from the parietal lobe, the superior longitudinal fasciculus subcomponents I, II and III; from the occipital-parietal region, the fronto-occipital fasciculus; from the temporal lobe, the middle longitudinal fasciculus and from rostral to caudal, the uncinate fasciculus, extreme capsule and arcuate fasciculus; from the occipital-temporal region, the inferior longitudinal fasciculus; and from the cingulate gyrus, the cingulum bundle. We suggest new interpretations of the putative functions of these fibre bundles based on the cortical areas that they link. These findings using DSI and validated with reference to autoradiographic tract tracing in the monkey represent a considerable advance in the understanding of the fibre pathways in the cerebral white matter. By replicating the major features of these tracts identified by histological techniques in monkey, we show that DSI has the potential to cast new light on the organization of the human brain in the normal state and in clinical disorders.


Subject(s)
Autoradiography/methods , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Nerve Fibers , Neural Pathways/anatomy & histology , Animals , Frontal Lobe/anatomy & histology , Gyrus Cinguli/anatomy & histology , Macaca mulatta , Occipital Lobe/anatomy & histology , Parietal Lobe/anatomy & histology , Temporal Lobe/anatomy & histology
20.
Neuroimage ; 35(2): 553-65, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17292630

ABSTRACT

High resolution ex vivo diffusion tensor imaging (DTI) studies of neural tissues can improve our understanding of brain structure. In these studies we can modify the tissue relaxation properties of the fixed tissues to better suite the scanner hardware. We investigated the use of Gd-DTPA contrast agent to provide the optimum signal-to-noise (SNR) ratio in 3D DTI scans of formalin fixed nonhuman primate brains at 4.7 T. Relaxivity measurements in gray and white matter allowed us to optimize the Gd concentration for soaking the brains, resulting in a 2 fold improvement in SNR for the 3D scans. FA changed little with Gd concentrations up to 10 mM although ADC was reduced at 5 and 10 mM. Comparison of in vivo, fresh ex vivo and fixed brains showed no significant FA changes but reductions in ADC of about 50% in fresh ex vivo, and 64% and 80% in fixed gray and white matter respectively. Studies of the temperature dependence of diffusion in these tissues suggested that a 30 degrees increase in sample temperature may yield an improvement of up to 55% in SNR-efficiency for a given diffusion weighting. Our Gd soaking regimen appeared to have no detrimental effect on standard histology of the fixed brain sections. Our methods yield both high SNR and spatial resolution DTI data in fixed primate brains, allowing us to perform high resolution tractography which will facilitate the process of 'validation' of DTI fiber tracts against traditional measures of brain fiber architecture.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Diffusion Magnetic Resonance Imaging , Animals , Diffusion Magnetic Resonance Imaging/methods , Macaca fascicularis , Male , Tissue Fixation
SELECTION OF CITATIONS
SEARCH DETAIL
...