Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 21(3): 507-514, 2019 May.
Article in English | MEDLINE | ID: mdl-29779248

ABSTRACT

This work aims to study seeds of the endemic species Astragalus aquilanus from four different populations of central Italy. We investigated seed morpho-colorimetric features (shape and size) and chemical differences (through infrared spectroscopy) among populations and between dark and light seeds. Seed morpho-colorimetric quantitative variables, describing shape, size and colour traits, were measured using image analysis techniques. Fourier transform infrared (FT-IR) spectroscopy was used to attempt seed chemical characterisation. The measured data were analysed by step-wise linear discriminant analysis (LDA). Moreover, we analysed the correlation between the four most important traits and six climatic variables extracted from WorldClim 2.0. The LDA on seeds traits shows clear differentiation of the four populations, which can be attributed to different chemical composition, as confirmed by Wilk's lambda test (P < 0.001). A strong correlation between morphometric traits and temperature (annual mean temperature, mean temperature of the warmest and coolest quarter), colorimetric traits and precipitation (annual precipitation, precipitation of wettest and driest quarter) was observed. The characterisation of A. aquilanus seeds shows large intraspecific plasticity both in morpho-colorimetric and chemical composition. These results confirm the strong relationship between the type of seed produced and the climatic variables.


Subject(s)
Fabaceae/physiology , Seeds/physiology , Spectroscopy, Fourier Transform Infrared , Temperature
2.
J Sep Sci ; 38(8): 1402-10, 2015 May.
Article in English | MEDLINE | ID: mdl-25677172

ABSTRACT

Novel polystyrene-based molecularly imprinted polymer nanofibers were synthesized through the electrospinning technique. The molecularly imprinted polymers were prepared using a non-covalent approach and atrazine as template. For comparison, nonimprinted polymer nanofibers were also synthesized. The morphology of the synthesized nanofibers was characterized using scanning electron microscopy. The adsorption of pesticides, atrazine, atrazine desisopropyl, atraton, carboxin, linuron, and chlorpyrifos was studied under equilibrium (batch) conditions. To describe the adsorption capability of the synthesized polymers, Langmuir and Freundlich models were used. The Freundlich model provided a better mathematical approximation of the sorption characteristic for polymers nanofibers. To evaluate the adsorption capacity in the presence of interferents experiments on river water samples spiked with a mixture of six pesticides were also performed. The results obtained for the highest concentration levels investigated, show a greater amount of pesticide adsorbed on molecularly imprinted polymers and non-imprinted polymers compared to those obtained using commercial stationary phases used as reference.


Subject(s)
Atrazine/analysis , Electrochemistry , Molecular Imprinting , Pesticides/analysis , Polymers/chemistry , Adsorption , Chemistry Techniques, Analytical , Chromatography , Microscopy, Electron, Scanning , Models, Theoretical , Nanofibers/chemistry , Nanotechnology , Solid Phase Extraction , Water Pollutants, Chemical
3.
J Protein Chem ; 18(7): 785-9, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10691189

ABSTRACT

Conformational changes at the active site of pantetheine hydrolase (EC3.5.1.-) during guanidine hydrochloride (GndHCl) denaturation were investigated by UV and circular dichroism spectroscopy and by electron spin resonance spectroscopy, following the spectral behaviour of the nitroxide radicals (N-(1-oxyl-2,2,5,5,-tetramethyl-3-pyrrolidinyl) iodacetamide) covalently linked to the two active site cysteine residues. At low denaturant concentrations (0.2 M) no conformational changes may be observed, whereas the catalytic activity, is strongly affected. The results indicate that the active site of pantetheine hydrolase is labile and unfolds under conditions in which no global tertiary structure modifications can be observed.


Subject(s)
Amidohydrolases/chemistry , Guanidine/chemistry , Protein Denaturation , Binding Sites , Cyclic N-Oxides , Electron Spin Resonance Spectroscopy , GPI-Linked Proteins , Protein Conformation , Spin Labels
4.
Biopolymers ; 33(10): 1553-65, 1993 Oct.
Article in English | MEDLINE | ID: mdl-8218923

ABSTRACT

Aqueous solutions formed by polypeptides, simple models of proteins, and bile salts (sodium cholate and deoxycholate, NaC and NaDC, respectively) or bilirubin-IX alpha (BR) have been studied by CD measurements. They could mimic more complicated biliary systems, thus supplying a possible interpretation of the behavior of some amino acid residues in the biliary proteins. The aggregation of NaDC and NaC in water can be monitored by CD measurements. Bile salts, in submicellar and micellar form, stabilize poly(L-Lys) (PLL) in alpha-helical conformation. The alpha-helix content increases with increasing bile salt concentration and ionic strength. NaDC seems to be a slightly better stabilizing agent of the alpha-helix conformation than NaC. Models characterized by hydrogen bonds between bile salts and PLL are proposed, also resorting to previous data available on the systems formed by NaDC and poly(L-Leu-L-Leu-L-Lys) (PLLL) or poly(L-Leu-L-Leu-L-Asp) (PLLA). Binding of BR to PLL, poly(D-Lys), poly(L-Glu), PLLL, and PLLA in water has been investigated by CD spectra in order to clarify the nature of the association complexes and the mechanism of the BR enantioselective complexation. Potential energy calculations provide binding models capable of explaining the enantioselective ability of the PLL and PLLL alpha-helices toward the left- and right-handed enantiomer of BR, respectively. BR is bound to -NH2 groups of PLL and PLLL lying on a right- and left-handed spiral, respectively. These results, together with those formerly obtained for some bile salts-BR systems, indicate that the selectivity originates from a binding that involves large regions of the BR molecule and gives rise, very probably, to moderate conformational changes from the "ridge tile" structure observed in the crystals. In some cases van der Waals forces can play a crucial role in the chiral recognition of bilirubin. Moreover, possible interaction models of BR with human serum albumin are proposed on the basis of a recent x-ray crystal structure of the protein.


Subject(s)
Bile Acids and Salts/chemistry , Bilirubin/chemistry , Peptides/chemistry , Amino Acid Sequence , Molecular Sequence Data , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...