Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 5(6): 1609-20, 2014 Mar 30.
Article in English | MEDLINE | ID: mdl-24742492

ABSTRACT

TBX2 is an oncogenic transcription factor known to drive breast cancer proliferation. We have identified the cysteine protease inhibitor Cystatin 6 (CST6) as a consistently repressed TBX2 target gene, co-repressed through a mechanism involving Early Growth Response 1 (EGR1). Exogenous expression of CST6 in TBX2-expressing breast cancer cells resulted in significant apoptosis whilst non-tumorigenic breast cells remained unaffected. CST6 is an important tumor suppressor in multiple tissues, acting as a dual protease inhibitor of both papain-like cathepsins and asparaginyl endopeptidases (AEPs) such as Legumain (LGMN). Mutation of the CST6 LGMN-inhibitory domain completely abrogated its ability to induce apoptosis in TBX2-expressing breast cancer cells, whilst mutation of the cathepsin-inhibitory domain or treatment with a pan-cathepsin inhibitor had no effect, suggesting that LGMN is the key oncogenic driver enzyme. LGMN activity assays confirmed the observed growth inhibitory effects were consistent with CST6 inhibition of LGMN. Knockdown of LGMN and the only other known AEP enzyme (GPI8) by siRNA confirmed that LGMN was the enzyme responsible for maintaining breast cancer proliferation. CST6 did not require secretion or glycosylation to elicit its cell killing effects, suggesting an intracellular mode of action. Finally, we show that TBX2 and CST6 displayed reciprocal expression in a cohort of primary breast cancers with increased TBX2 expression associating with increased metastases. We have also noted that tumors with altered TBX2/CST6 expression show poor overall survival. This novel TBX2-CST6-LGMN signaling pathway, therefore, represents an exciting opportunity for the development of novel therapies to target TBX2 driven breast cancers.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Cystatin M/genetics , Cysteine Endopeptidases/metabolism , T-Box Domain Proteins/metabolism , Apoptosis , Blotting, Western , Breast Neoplasms/genetics , Chromatin Immunoprecipitation , Cystatin M/metabolism , Cysteine Endopeptidases/genetics , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Glycosylation , Humans , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , T-Box Domain Proteins/antagonists & inhibitors , T-Box Domain Proteins/genetics , Tumor Cells, Cultured
2.
Nucleic Acids Res ; 41(18): 8601-14, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23863842

ABSTRACT

Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.


Subject(s)
BRCA1 Protein/physiology , Breast Neoplasms/genetics , Breast/metabolism , Receptors, Notch/genetics , Animals , Breast/cytology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Calcium-Binding Proteins/genetics , Cell Differentiation , Cell Line , Embryonic Stem Cells/metabolism , Estrogen Antagonists/pharmacology , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Jagged-1 Protein , MCF-7 Cells , Membrane Proteins/genetics , Mice , Receptor, Notch1/genetics , Receptors, Notch/biosynthesis , Receptors, Notch/metabolism , Serrate-Jagged Proteins , Signal Transduction/genetics , Tamoxifen/pharmacology , Transcription Factors/physiology , Transcription, Genetic , Tumor Suppressor Proteins/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...