Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(8): R356-R357, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35472420

ABSTRACT

Bakker et al. use Robinson et al.'s reconstruction of three species of vulture to illustrate how incorrect generation time estimates can yield inaccurate results, underscoring the importance of generation time specification for genetically based reconstructions, especially for comparisons and species of conservation concern.


Subject(s)
Falconiformes , Animals , Demography
2.
PLoS One ; 14(12): e0226491, 2019.
Article in English | MEDLINE | ID: mdl-31891594

ABSTRACT

Conservation practitioners are increasingly looking to species translocations as a tool to recover imperiled taxa. Quantitative predictions of where animals are likely to move when released into new areas would allow managers to better address the social, institutional, and ecological dimensions of conservation translocations. Using >5 million California condor (Gymnogyps californianus) occurrence locations from 75 individuals, we developed and tested circuit-based models to predict condor movement away from release sites. We found that circuit-based models of electrical current were well calibrated to the distribution of condor movement data in southern and central California (continuous Boyce Index = 0.86 and 0.98, respectively). Model calibration was improved in southern California when additional nodes were added to the circuit to account for nesting and feeding areas, where condor movement densities were higher (continuous Boyce Index = 0.95). Circuit-based projections of electrical current around a proposed release site in northern California comported with the condor's historical distribution and revealed that, initially, condor movements would likely be most concentrated in northwestern California and southwest Oregon. Landscape linkage maps, which incorporate information on landscape resistance, complement circuit-based models and aid in the identification of specific avenues for population connectivity or areas where movement between populations may be constrained. We found landscape linkages in the Coast Range and the Sierra Nevada provided the most connectivity to a proposed reintroduction site in northern California. Our methods are applicable to conservation translocations for other species and are flexible, allowing researchers to develop multiple competing hypotheses when there are uncertainties about landscape or social attractants, or uncertainties in the landscape conductance surface.


Subject(s)
Conservation of Natural Resources/methods , Falconiformes/physiology , Animals , California , Endangered Species , Geographic Information Systems , Models, Theoretical , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...