Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1095845, 2023.
Article in English | MEDLINE | ID: mdl-37168610

ABSTRACT

Introduction: Knowledge of the accurate in-vivo kinematics of total hip arthroplasty (THA) during activities of daily living can potentially improve the in-vitro or computational wear and impingement prediction of hip implants. Fluoroscopy- based techniques provide more accurate kinematics compared to skin marker-based motion capture, which is affected by the soft tissue artefact. To date, stationary fluoroscopic machines allowed the measurement of only restricted movements, or only a portion of the whole motion cycle. Methods: In this study, a moving fluoroscopic robot was used to measure the hip joint motion of 15 THA subjects during whole cycles of unrestricted activities of daily living, i.e., overground gait, stair descent, chair rise and putting on socks. Results: The retrieved hip joint motions differed from the standard patterns applied for wear testing, demonstrating that current pre-clinical wear testing procedures do not reflect the experienced in-vivo daily motions of THA. Discussion: The measured patient-specific kinematics may be used as input to in vitro and computational simulations, in order to investigate how individual motion patterns affect the predicted wear or impingement.

2.
Med Phys ; 48(10): 5991-6006, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34287934

ABSTRACT

PURPOSE: Estimation of the accuracy of 2D-3D registration is paramount for a correct evaluation of its outcome in both research and clinical studies. Publicly available datasets with standardized evaluation methodology are necessary for validation and comparison of 2D-3D registration techniques. Given the large use of 2D-3D registration in biomechanics, we introduced the first gold standard validation dataset for computed tomography (CT)-to-x-ray registration of the hip joint, based on fluoroscopic images with large rotation angles. As the ground truth computed with fiducial markers is affected by localization errors in the image datasets, we proposed a new methodology based on uncertainty propagation to estimate the accuracy of a gold standard dataset. METHODS: The gold standard dataset included a 3D CT scan of a female hip phantom and 19 2D fluoroscopic images acquired at different views and voltages. The ground truth transformations were estimated based on the corresponding pairs of extracted 2D and 3D fiducial locations. These were assumed to be corrupted by Gaussian noise, without any restrictions of isotropy. We devised the multiple projective points criterion (MPPC) that jointly optimizes the transformations and the noisy 3D fiducial locations for all views. The accuracy of the transformations obtained with the MPPC was assessed in both synthetic and real experiments using different formulations of the target registration error (TRE), including a novel formulation of the TRE (uTRE) derived from the uncertainty analysis of the MPPC. RESULTS: The proposed MPPC method was statistically more accurate compared to the validation methods for 2D-3D registration that did not optimize the 3D fiducial positions or wrongly assumed the isotropy of the noise. The reported results were comparable to previous published works of gold standard datasets. However, a formulation of the TRE commonly found in these gold standard datasets was found to significantly miscalculate the true TRE computed in synthetic experiments with known ground truths. In contrast, the uncertainty-based uTRE was statistically closer to the true TRE. CONCLUSIONS: We proposed a new gold standard dataset for the validation of CT-to-X-ray registration of the hip joint. The gold standard transformations were derived from a novel method modeling the uncertainty in extracted 2D and 3D fiducials. Results showed that considering possible noise anisotropy and including corrupted 3D fiducials in the optimization resulted in improved accuracy of the gold standard. A new uncertainty-based formulation of the TRE also appeared as a good alternative to the unknown true TRE that has been replaced in previous works by an alternative TRE not fully reflecting the gold standard accuracy.


Subject(s)
Fiducial Markers , Imaging, Three-Dimensional , Algorithms , Female , Hip Joint/diagnostic imaging , Humans , Phantoms, Imaging , Uncertainty
3.
J Biomech ; 104: 109717, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32234246

ABSTRACT

Soft tissue artefact (STA) affects the kinematics retrieved with skin marker-based motion capture, and thus influences the outcomes of biomechanical models that rely on such kinematics. In order to be compensated for, the effects of STA must be characterized across a broad sample population and for different motion activities. In this study, the error introduced by STA on the kinematics of the hip joint and of its individual components, and on the location of the hip joint center (HJC) was quantified for fifteen THA subjects during overground gait, stair descent, chair rise and putting on socks. The error due to STA was computed as the difference between the kinematics measured with motion capture and those measured simultaneously with moving fluoroscopy, a STA-free X-ray technique. The main significant effects of STA were: underestimation of the hip range of motion for all four activities, underestimation of the flexion especially during phases of the motion with higher flexion, overestimation of the internal rotation, and lateral misplacement of the HJC mostly due to the functional calibration. The thigh contributed more to the STA error than the pelvis. The STA error of the thigh appeared to be correlated with the hip flexion angles, with a varying degree of linearity depending on the activity and on the phase of the motion cycle. Future kinematic-driven STA compensation models should take into account the non-linearity of the STA error and its dependency of the phase of the motion cycle.


Subject(s)
Activities of Daily Living , Artifacts , Hip Joint , Biomechanical Phenomena , Humans , Range of Motion, Articular
4.
J Arthroplasty ; 32(10): 3213-3218, 2017 10.
Article in English | MEDLINE | ID: mdl-28641969

ABSTRACT

BACKGROUND: Video fluoroscopy is a technique currently used to retrieve the in vivo three-dimensional kinematics of human joints during activities of daily living. Minimization of the radiation dose absorbed by the subject during the measurement is a priority and has not been thoroughly addressed so far. This issue is critical for the motion analysis of the hip joint, because of the proximity of the gonads. The aims of this study were to determine the x-ray voltage and the irradiation angle that minimize the effective dose and to achieve the best compromise between delivered dose and accuracy in motion retrieval. METHODS: Effective dose for a fluoroscopic study of the hip was estimated by means of Monte Carlo simulations and dosimetry measurements. Accuracy in pose retrieval for the different viewing angles was evaluated by registration of simulated radiographs of a hip prosthesis during a prescribed virtual motion. RESULTS: Absorbed dose can be minimized to about one-sixth of the maximum estimated values by irradiating at the optimal angle of 45° from the posterior side and by operating at 80 kV. At this angle, accuracy in retrieval of internal-external rotation is poorer compared with the other viewing angles. CONCLUSION: The irradiation angle that minimizes the delivered dose does not necessarily correspond to the optimal angle for the accuracy in pose retrieval, for all rotations. For some applications, single-plane fluoroscopy may be a valid lower dose alternative to the dual-plane methods, despite their better accuracy.


Subject(s)
Fluoroscopy/methods , Hip Joint/physiology , Activities of Daily Living , Arthroplasty, Replacement, Hip , Biomechanical Phenomena , Female , Hip Joint/diagnostic imaging , Humans , Male , Motion , Radiation Dosage , Range of Motion, Articular , Video Recording , X-Rays
5.
Phys Med Biol ; 60(10): 4123-35, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25933258

ABSTRACT

Phase contrast mammography using a grating interferometer is an emerging technology for breast imaging. It provides complementary information to the conventional absorption-based methods. Additional diagnostic values could be further obtained by retrieving quantitative information from the three physical signals (absorption, differential phase and small-angle scattering) yielded simultaneously. We report a non-parametric quantitative volumetric breast density estimation method by exploiting the ratio (dubbed the R value) of the absorption signal to the small-angle scattering signal. The R value is used to determine breast composition and the volumetric breast density (VBD) of the whole breast is obtained analytically by deducing the relationship between the R value and the pixel-wise breast density. The proposed method is tested by a phantom study and a group of 27 mastectomy samples. In the clinical evaluation, the estimated VBD values from both cranio-caudal (CC) and anterior-posterior (AP) views are compared with the ACR scores given by radiologists to the pre-surgical mammograms. The results show that the estimated VBD results using the proposed method are consistent with the pre-surgical ACR scores, indicating the effectiveness of this method in breast density estimation. A positive correlation is found between the estimated VBD and the diagnostic ACR score for both the CC view (p = 0.033) and AP view (p = 0.001). A linear regression between the results of the CC view and AP view showed a correlation coefficient γ = 0.77, which indicates the robustness of the proposed method and the quantitative character of the additional information obtained with our approach.


Subject(s)
Algorithms , Breast Neoplasms , Image Interpretation, Computer-Assisted/methods , Mammary Glands, Human/abnormalities , Mammography/methods , Absorption, Radiation , Breast Density , Female , Humans , Scattering, Small Angle
6.
Proc SPIE Int Soc Opt Eng ; 85842013 Feb 26.
Article in English | MEDLINE | ID: mdl-24244830

ABSTRACT

BACKGROUND: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. METHODS: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. RESULTS: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. CONCLUSIONS: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...