Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
Neurotherapeutics ; 21(3): e00344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521667

ABSTRACT

In the landscape of paediatric epilepsy treatment, over 20 anti-seizure medications (ASMs) have gained approval from Drug Regulatory Agencies, each delineating clear indications. However, the complexity of managing drug-resistant epilepsy often necessitates the concurrent use of multiple medications. This therapeutic challenge highlights a notable gap: the absence of standardized guidelines, compelling clinicians to rely on empirical clinical experience when selecting combination therapies. This comprehensive review aims to explore current evidence elucidating the preferential utilization of specific ASMs or their combinations, with a primary emphasis on pharmacodynamic considerations. The fundamental objective underlying rational polytherapy is the strategic combination of medications, harnessing diverse mechanisms of action to optimize efficacy while mitigating shared side effects. Moreover, the intricate interplay between epilepsy and comorbidities partly may influence the treatment selection process. Despite advancements, unresolved queries persist, notably concerning the mechanisms underpinning drug resistance and the paradoxical exacerbation of seizures. By synthesizing existing evidence and addressing pertinent unresolved issues, this review aims to contribute to the evolving landscape of paediatric epilepsy treatment strategies, paving the way for more informed and efficacious therapeutic interventions.


Subject(s)
Anticonvulsants , Epilepsy , Humans , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Child , Epilepsy/drug therapy , Drug Therapy, Combination/methods , Drug Resistant Epilepsy/drug therapy
3.
Can J Neurol Sci ; : 1-6, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523490

ABSTRACT

The Canadian League Against Epilepsy initiated a virtual epilepsy education program, conducting 29 webinars from March 2021 to September 2023. We report our experience, with the goal to inspire other groups to develop inclusive, equitable, and free educational spaces with a worldwide reach. Monthly sessions drew a median attendance of 118 participants, predominantly Canadian but also international, including physicians (58.9%) and trainees (22.8%). Post-webinar surveys (average 40% response rate) noted high satisfaction, a strong inclination to recommend the sessions, and an interest in clinical case-based topics. We plan to consider integrating a self-assessment section evaluating knowledge gained after each seminar.

4.
Epilepsia Open ; 9(2): 486-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38334331

ABSTRACT

Myoclonus classically presents as a brief (10-50 ms duration), non-rhythmic jerk movement. The etiology could vary considerably ranging from self-limited to chronic or even progressive disorders, the latter falling into encephalopathic pictures that need a prompt diagnosis. Beyond the etiological classification, others evaluate myoclonus' body distribution (i.e., clinical classification) or the location of the generator (i.e., neurophysiological classification); particularly, knowing the anatomical source of myoclonus gives inputs on the observable clinical patterns, such as EMG bursts duration or EEG correlate, and guides the therapeutic choices. Among all the chronic disorders, myoclonus often presents itself as a manifestation of epilepsy. In this context, myoclonus has many facets. Myoclonus occurs as one, or the only, seizure manifestation while it can also present as a peculiar type of movement disorder; moreover, its electroclinical features within specific genetically determined epileptic syndromes have seldom been investigated. In this review, following a meeting of recognized experts, we provide an up-to-date overview of the neurophysiology and nosology surrounding myoclonus. Through the dedicated exploration of epileptic syndromes, coupled with pragmatic guidance, we aim to furnish clinicians and researchers alike with practical advice for heightened diagnostic management and refined treatment strategies. PLAIN LANGUAGE SUMMARY: In this work, we described myoclonus, a movement characterized by brief, shock-like jerks. Myoclonus could be present in different diseases and its correct diagnosis helps treatment.


Subject(s)
Epilepsy , Epileptic Syndromes , Movement Disorders , Myoclonus , Humans , Myoclonus/diagnosis , Myoclonus/therapy , Myoclonus/etiology , Diagnosis, Differential , Epilepsy/complications , Epileptic Syndromes/complications
6.
Pediatr Neurol ; 149: 84-92, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820543

ABSTRACT

BACKGROUND: P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS: We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS: We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS: We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.


Subject(s)
Neurodevelopmental Disorders , p21-Activated Kinases , Child , Humans , p21-Activated Kinases/genetics , p21-Activated Kinases/chemistry , p21-Activated Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Mutation, Missense
7.
Pediatr Neurol ; 148: 148-151, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722300

ABSTRACT

BACKGROUND: Several specific syndromes within the RASopathies spectrum lead to an increased risk of seizures up to developing refractory epileptic encephalopathy. Management remains symptomatic. METHODS: Here we report two patients treated with trametinib, a MEK1-2 inhibitor, as a precision strategy for drug-resistant epilepsy. Patient 1 is a six-year-old girl with cardiofaciocutaneous syndrome (BRAF p.F595L, germline mutation), and Patient 2 is a 14-month-old boy with Schimmelpenning syndrome (KRAS p.G12D, postzygotic somatic mutation). Trametinib was initiated at a dosage of 0.025 mg/kg/day. RESULTS: Patient 1 had multiple seizures per day, multifocal motor to bilateral tonic-clonic. Electroencephalography (EEG) showed a dramatic reduction in EEG discharges three months after trametinib onset, while a marked clinical improvement occurred after about five months, at the same dosage, and the girl is currently seizure-free for more than six months. Patient 2 had left cerebral hemiatrophy leading to right focal motor seizures, multiple per week to multiple per day, since the age of three months. On trametinib, he experienced an early benefit, remaining seizure-free for more than three months. However, after six months we observed recurrence of seizures. After 22 months of treatment, trametinib was discontinued because of a suspected drug-induced inflammatory colitis. After discontinuation, we observed a significant clinical and EEG "rebound effect." CONCLUSIONS: We provide proof of concept that MEK inhibition is a promising approach for the treatment of patients with refractory epilepsy with selected germline and mosaic RASopathies. Future trials are encouraged to better investigate their potentials and limitations.

8.
Clin Genet ; 104(3): 371-376, 2023 09.
Article in English | MEDLINE | ID: mdl-37191084

ABSTRACT

NAA20 is the catalytic subunit of the NatB complex, which is responsible for N-terminal acetylation of approximately 20% of the human proteome. Recently, pathogenic biallelic variants in NAA20 were associated with a novel neurodevelopmental disorder in five individuals with limited clinical information. We report two sisters harboring compound heterozygous variant (c.100C>T (p.Gln34Ter) and c.11T>C p.(Leu4Pro)) in the NAA20 gene, identified by exome sequencing. In vitro studies showed that the missense variant p.Leu4Pro resulted in a reduction of NAA20 catalytic activity due to weak coupling with the NatB auxiliary subunit. In addition, unpublished data of the previous families were reported, outlining the core phenotype of the NAA20-related disorder mostly characterized by cognitive impairment, microcephaly, ataxia, brain malformations, dysmorphism and variable occurrence of cardiac defect and epilepsy. Remarkably, our two patients featured epilepsy onset in adolescence suggesting this may be a part of syndrome evolution. Functional studies are needed to better understand the complexity of NAA20 variants pathogenesis as well as of other genes linked to N-terminal acetylation.


Subject(s)
Microcephaly , Nervous System Malformations , Adolescent , Humans , Catalytic Domain , Microcephaly/genetics , Syndrome , Phenotype , N-Terminal Acetyltransferase B/genetics , N-Terminal Acetyltransferase B/metabolism
9.
Hum Genet ; 142(7): 909-925, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183190

ABSTRACT

Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Humans , Child , Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Genetic Association Studies , Seizures/genetics , Contactins/genetics
10.
Article in English | MEDLINE | ID: mdl-36862522

ABSTRACT

Background: Glycosylphosphatidylinositol-anchored protein deficiencies (GPI-ADs) are commonly associated with drug-resistant epilepsy (DRE). Cannabidiol (CBD) is approved for the adjunctive treatment of seizures in Dravet/Lennox-Gastaut Syndromes and Tuberous Sclerosis Complex. We report on the efficacy and safety of CBD for the treatment of DRE in patients with genetically proven GPI-AD. Patients and Methods: Patients received add-on treatment with purified GW-pharma CBD (Epidyolex®). Efficacy endpoints were the percentage of patients with ≥50% (responders) or >25<50% (partial responders) reduction in monthly seizures from baseline and at 12 (M12) months of follow-up. Safety was evaluated through adverse events (AEs) monitoring. Results: Six patients (5 males) were enrolled. The median age at seizures onset was 5 months and the syndromic diagnosis was early infantile developmental and epileptic encephalopathy in 4 patients and focal non-lesional epilepsy or GEFS+ in one patient each. Five out of six (83%) patients were responders at M12, while one was a partial responder. No severe AEs were reported. Mean prescribed CBD dose was 17.85 mg/kg/day and median treatment duration is currently 27 months. Conclusions: In summary, off-label treatment with CBD was effective and safe in patients with DRE due to GPI-ADs.

12.
Epilepsia Open ; 8(3): 1142-1150, 2023 09.
Article in English | MEDLINE | ID: mdl-36840436

ABSTRACT

Response to antiseizure medications (ASMs) can be influenced by several gene polymorphisms, causing either lower efficacy or higher occurrence of adverse drug reactions (ADRs). We investigated the clinical utility of salivary pharmacogenomic testing on epilepsy patients. A commercialized pharmacogenomic salivary test was performed in a cohort of epileptic patients. Genetic variants on five genes (i.e., CYP1A2, CYP2C9, CYP2C19, EPHX1, and ABCB1) involved in common ASMs metabolism were selected. Twenty-one individuals (median age [Q1 -Q3 ]: 15 [6.5-28] years) were enrolled. Six patients harboring the homozygous *1F allele in CYP1A2 could have reduced chance of response to stiripentol due to fast metabolism. CYP2C9 had reduced activity in 10 patients (alleles *2 and *3), potentially affecting phenytoin (PHT), phenobarbital (PB), primidone, lacosamide (LCM), and valproic acid metabolism. Seven patients, carrying the *2 allele of CYP2C19, had an increased risk of ADRs with clobazam (CLB), PB, PHT, LCM, brivaracetam; while one individual with the *17 allele in heterozygosity reported a CLB fast metabolism. Six patients showed a CC polymorphism of EPHX1 associated with the impaired efficacy of carbamazepine. ABCB1 polymorphisms related to drug-resistance (3435 CC) or drug-sensitive phenotype (CT or TT) were found in 6 out of 7 patients. Pharmacogenomic testing on saliva proved easy and safe in clinical practice to convey information for the management of epileptic patients, especially those resistant to treatment or sensitive to severe ADRs.


Subject(s)
Anticonvulsants , Epilepsy , Humans , Anticonvulsants/therapeutic use , Pharmacogenetics , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C19/therapeutic use , Pilot Projects , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Saliva/metabolism , Epilepsy/drug therapy , Epilepsy/genetics , Phenytoin/adverse effects , Clobazam/therapeutic use , Phenobarbital/therapeutic use
13.
Neurology ; 100(12): e1234-e1247, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36599696

ABSTRACT

BACKGROUND AND OBJECTIVES: BRAT1 encephalopathy is an ultra-rare autosomal recessive neonatal encephalopathy. We delineate the neonatal electroclinical phenotype at presentation and provide insights for early diagnosis. METHODS: Through a multinational collaborative, we studied a cohort of neonates with encephalopathy associated with biallelic pathogenic variants in BRAT1 for whom detailed clinical, neurophysiologic, and neuroimaging information was available from the onset of symptoms. Neuropathologic changes were also analyzed. RESULTS: We included 19 neonates. Most neonates were born at term (16/19) from nonconsanguineous parents. 15/19 (79%) were admitted soon after birth to a neonatal intensive care unit, exhibiting multifocal myoclonus, both spontaneous and exacerbated by stimulation. 7/19 (37%) had arthrogryposis at birth, and all except 1 progressively developed hypertonia in the first week of life. Multifocal myoclonus, which was present in all but 1 infant, was the most prominent manifestation and did not show any EEG correlate in 16/19 (84%). Video-EEG at onset was unremarkable in 14/19 (74%) infants, and 6 (33%) had initially been misdiagnosed with hyperekplexia. Multifocal seizures were observed at a median age of 14 days (range: 1-29). During the first months of life, all infants developed progressive encephalopathy, acquired microcephaly, prolonged bouts of apnea, and bradycardia, leading to cardiac arrest and death at a median age of 3.5 months (range: 20 days to 30 months). Only 7 infants (37%) received a definite diagnosis before death, at a median age of 34 days (range: 25-126), and almost two-thirds (12/19, 63%) were diagnosed 8 days to 12 years postmortem (median: 6.5 years). Neuropathology examination, performed in 3 patients, revealed severely delayed myelination and diffuse astrogliosis, sparing the upper cortical layers. DISCUSSION: BRAT1 encephalopathy is a neonatal-onset, rapidly progressive neurologic disorder. Neonates are often misdiagnosed as having hyperekplexia, and many die undiagnosed. The key phenotypic features are multifocal myoclonus, an organized EEG, progressive, persistent, and diffuse hypertonia, and an evolution into refractory multifocal seizures, prolonged bouts of apnea, bradycardia, and early death. Early recognition of BRAT1 encephalopathy allows for prompt workup, appropriate management, and genetic counseling.


Subject(s)
Brain Diseases , Hyperekplexia , Myoclonus , Humans , Apnea , Bradycardia , Brain Diseases/diagnosis , Brain Diseases/genetics , Seizures/genetics , Phenotype , Muscle Hypertonia , Nuclear Proteins/genetics
14.
Eur J Med Genet ; 65(11): 104622, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36122673

ABSTRACT

KIF5C encodes a protein belonging to the kinesin family and involved in cellular transport. Variants in KIF5C were first associated a decade ago with microcephaly and malformations of cortical development, with a phenotypic spectrum ranging from polymicrogyria to pachygyria. Currently, eight patients have been reported so far. Here we describe a new paediatric patient carrying the recurrent p.(Glu237Lys) KIF5C variant associated with a distinctive neuroradiological pattern of abnormal posterior course of the corticospinal tract at the level of the pons with a thickened anterior component of the transverse pontine fibers. This finding is likely related to altered axonal guidance and requires further evidence in other patients with KIF5C-related disorder.


Subject(s)
Brain Diseases , Lissencephaly , White Matter , Child , Humans , Kinesins/genetics , Pyramidal Tracts/diagnostic imaging
15.
Expert Opin Pharmacother ; 23(15): 1727-1736, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36124778

ABSTRACT

INTRODUCTION: Dravet Syndrome (DS) is a developmental and epileptic encephalopathy carrying high-level psychobehavioral burdens. Although the disease has been known for almost 4 decades, and despite significant progress in the understanding of its physiopathology and natural course, the pharmacological treatment leaves patients and caregivers with significant unmet needs. This review provides a summary of the current and promising therapeutic options for DS. AREAS COVERED: PubMed and ClinicalTrials.gov were screened using 'Dravet Syndrome' OR 'DS,' AND 'pharmacotherapy,' AND 'treatments.' Randomized clinical trials, structured reviews, and meta-analyses were selected for in-human application of well-known anti-seizure medications; while in-vivo experiments on models of DS were selected to evaluate the potential of new therapeutic strategies. EXPERT OPINION: The search for new pharmacological treatment options is led by the need for care and defeat of the natural course of the disease, an aspect still largely neglected by the available therapeutic strategies. Yet, the last 6 years have led to a climate of increased interest and availability of clinical trials. Particularly, gene therapy could hopefully prevent DS evolution by directly relieving the specific genetic defect, although the possibility of off-target editing, and the uneasy administration route have still largely prevented its use.


Subject(s)
Epilepsies, Myoclonic , Epileptic Syndromes , Spasms, Infantile , Humans , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics
16.
Expert Opin Drug Metab Toxicol ; 18(9): 575-585, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36006892

ABSTRACT

INTRODUCTION: Levetiracetam (LEV) is one of the most widely used anti-seizure medications (ASMs) in clinical practice. This is due both to a different mechanism of action when compared to other ASMs and its easy handling. Indeed, because of its interesting pharmacokinetic properties, it is often used outside of the labeled indications, notably in the neurocritical setting as prophylaxis of epileptic seizures. AREAS COVERED: A literature search was conducted and the most relevant studies on the pharmacokinetic properties of LEV were selected by two independent investigators. Current evidence on the use of ASM prophylaxis in the neurocritical setting was also reviewed, highlighting and discussing the strengths and limits of LEV as drug of choice for anti-epileptic prophylaxis in this scenario. EXPERT OPINION: LEV has a 'near-ideal' pharmacokinetic profile, which makes it an attractive drug for ASM prophylaxis in neurocritical care. However, current recommendations restrict ASMs prophylaxis to very selected circumstances and the role of LEV is marginal. Moreover, studies are generally designed to compare LEV versus phenytoin, whereas studies comparing LEV versus placebo are lacking. Further, randomized trials will be needed to better elucidate LEV utility and its neuroprotective role in the neurocritical setting.


Subject(s)
Epilepsy , Piracetam , Anticonvulsants , Epilepsy/drug therapy , Humans , Levetiracetam , Phenytoin , Piracetam/therapeutic use
17.
PLoS One ; 17(8): e0273175, 2022.
Article in English | MEDLINE | ID: mdl-35972970

ABSTRACT

Perinatal asphyxia (PA) still occurs in about three to five per 1,000 deliveries in developed countries; 20% of these infants show hypoxic-ischemic encephalopathy (HIE) on brain magnetic resonance imaging (MRI). The aim of our study was to apply metabolomic analysis to newborns undergoing therapeutic hypothermia (TH) after PA to identify a distinct metabotype associated with the development of HIE on brain MRI. We enrolled 53 infants born at >35 weeks of gestation with PA: 21 of them showed HIE on brain MRI (the "HIE" group), and 32 did not (the "no HIE" group). Urine samples were collected at 24, 48 and 72 hours of TH. Metabolomic data were acquired using high-resolution mass spectrometry and analyzed with univariate and multivariate methods. Considering the first urines collected during TH, untargeted analysis found 111 relevant predictors capable of discriminating between the two groups. Of 35 metabolites showing independent discriminatory power, four have been well characterized: L-alanine, Creatine, L-3-methylhistidine, and L-lysine. The first three relate to cellular energy metabolism; their involvement suggests a multimodal derangement of cellular energy metabolism during PA/HIE. In addition, seven other metabolites with a lower annotation level (proline betaine, L-prolyl-L-phenylalanine, 2-methyl-dodecanedioic acid, S-(2-methylpropionyl)-dihydrolipoamide-E, 2,6 dimethylheptanoyl carnitine, Octanoylglucuronide, 19-hydroxyandrost-4-ene-3,17-dione) showed biological consistency with the clinical picture of PA. Moreover, 4 annotated metabolites (L-lysine, L-3-methylhistidine, 2-methyl-dodecanedioic acid, S-(2-methylpropionyl)-dihydrolipoamide-E) retained a significant difference between the "HIE" and "no HIE" groups during all the TH treatment. Our analysis identified a distinct urinary metabotype associated with pathological findings on MRI, and discovered 2 putative markers (L-lysine, L-3-methylhistidine) which may be useful for identifying neonates at risk of developing HIE after PA.


Subject(s)
Asphyxia Neonatorum , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Asphyxia/therapy , Asphyxia Neonatorum/therapy , Humans , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , Lysine
18.
Orphanet J Rare Dis ; 17(1): 286, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854306

ABSTRACT

BACKGROUND: Pathogenic variants in PEX-genes can affect peroxisome assembly and function and cause Zellweger spectrum disorders (ZSDs), characterized by variable phenotypes in terms of disease severity, age of onset and clinical presentations. So far, defects in at least 15 PEX-genes have been implicated in Mendelian diseases, but in some of the ultra-rare ZSD subtypes genotype-phenotype correlations and disease mechanisms remain elusive. METHODS: We report five families carrying biallelic variants in PEX13. The identified variants were initially evaluated by using a combination of computational approaches. Immunofluorescence and complementation studies on patient-derived fibroblasts were performed in two patients to investigate the cellular impact of the identified mutations. RESULTS: Three out of five families carried a recurrent p.Arg294Trp non-synonymous variant. Individuals affected with PEX13-related ZSD presented heterogeneous clinical features, including hypotonia, developmental regression, hearing/vision impairment, progressive spasticity and brain leukodystrophy. Computational predictions highlighted the involvement of the Arg294 residue in PEX13 homodimerization, and the analysis of blind docking predicted that the p.Arg294Trp variant alters the formation of dimers, impairing the stability of the PEX13/PEX14 translocation module. Studies on muscle tissues and patient-derived fibroblasts revealed biochemical alterations of mitochondrial function and identified mislocalized mitochondria and a reduced number of peroxisomes with abnormal PEX13 concentration. CONCLUSIONS: This study expands the phenotypic and mutational spectrum of PEX13-related ZSDs and also highlight a variety of disease mechanisms contributing to PEX13-related clinical phenotypes, including the emerging contribution of secondary mitochondrial dysfunction to the pathophysiology of ZSDs.


Subject(s)
Zellweger Syndrome , Genetic Association Studies , Humans , Membrane Proteins/genetics , Mutation/genetics , Peroxisomes/genetics , Peroxisomes/pathology , Zellweger Syndrome/genetics , Zellweger Syndrome/pathology
19.
Brain Dev ; 44(7): 469-473, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35414446

ABSTRACT

BACKGROUND: De novo mutations in the GABBR2 (Gamma-Aminobutyric acid Type B Receptor Subunit 2) gene have recently been reported to be associated with a form of early-infantile epileptic encephalopathy (EIEE59; OMIM# 617904), as well as a Rett syndrome (RTT)-like disorder defined as a neurodevelopmental disorder with poor language and loss of hand skills (NDPLHS; OMIM# 617903). METHODS: We describe a pediatric case carrying a de novo GABBR2 pathogenic variant and showing a phenotype encompassing RTT, epilepsy, generalized hypotonia with a paroxysmal limb dystonia. RESULTS: A 11-year-old girl, born to non-consanguineous parents after an uneventful pregnancy, had developmental delay and generalized hypotonia. At age 3.5 months she presented with infantile spasms with an electroencephalographic pattern of hypsarrhythmia. After treatment with clonazepam and prednisolone, she became seizure-free with a slow background electrical activity. Brain magnetic resonance imaging was normal. Paroxysmal dystonic posturing of the extremities, especially the upper limbs, have been observed since the age of 3 years. Motor stereotypies, non-epileptic episodes of hyperventilation and breath-holding were also reported. The girl suffered from feeding difficulties requiring gastrostomy at the age of 8. Exome sequencing (ES) revealed a de novo GABBR2 pathogenic variant (NM_005458:c.G2077T:p.G693W). CONCLUSION: Paroxysmal limb dystonias, especially in the context of neurodevelopmental disorder featuring epilepsy, generalized hypotonia and RTT-like features should lead to the suspect of GABBR2 mutations.


Subject(s)
Dystonia , Epilepsy , Rett Syndrome , Child , Epilepsy/drug therapy , Epilepsy/genetics , Extremities , Female , Humans , Muscle Hypotonia , Receptors, GABA-B , Rett Syndrome/genetics
20.
Epilepsia Open ; 2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34747137

ABSTRACT

We aimed to identify caregivers' opinions on the outcome measures that matter in clinical trials in individuals with Dravet syndrome (DS). We conducted a prospective European multicenter study based on an 11 closed questions survey developed by the French reference center for rare epilepsies and DS patients' advocacy groups. Items included questions on seizures and daily life outcomes that a clinical trial on a therapy for individuals with DS should target. Statistical analyses were performed to evaluate the impact of the country of residence and of the patients' age. The survey was answered by 153 caregivers (68%: France, 28%: Germany, and 24%: Italy) off individuals with DS. Individuals with DS included 86 males (mean age of 11.4 [interquartile: 7-20.4] years). Families ranked as important almost all the items proposed. However, items related to daily life had the highest rank in all three countries compared to items about seizures (P = 0.02). Increase in individuals' age was associated with a higher age at diagnosis (ρ = 0.26, P = 0.02), and a lower impact of seizure duration (ρ = -0.25, P = 0.005) and on the need of hospital referral (ρ = -0.26, P = 0.005). These data can help tailor patient-centered outcome measures in future clinical and real-life trials for DS.

SELECTION OF CITATIONS
SEARCH DETAIL
...