Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 25(6): 914-925, 2017 06.
Article in English | MEDLINE | ID: mdl-27856294

ABSTRACT

OBJECTIVE: We previously found in our embryonic studies that proper regulation of the chemokine CCL12 through its sole receptor CCR2, is critical for joint and growth plate development. In the present study, we examined the role of CCR2 in injury-induced-osteoarthritis (OA). METHOD: We used a murine model of injury-induced-OA (destabilization of medial meniscus, DMM), and systemically blocked CCR2 using a specific antagonist (RS504393) at different times during disease progression. We examined joint degeneration by assessing cartilage (cartilage loss, chondrocyte hypertrophy, MMP-13 expression) and bone lesions (bone sclerosis, osteophytes formation) with or without the CCR2 antagonist. We also performed pain behavioral studies by assessing the weight distribution between the normal and arthritic hind paws using the IITS incapacitance meter. RESULTS: Testing early vs delayed administration of the CCR2 antagonist demonstrated differential effects on joint damage. We found that OA changes in articular cartilage and bone were ameliorated by pharmacological CCR2 blockade, if given early in OA development: specifically, pharmacological targeting of CCR2 during the first 4 weeks (wks) following injury, reduced OA cartilage and bone damage, with less effectiveness with later treatments. Importantly, our pain-related behavioral studies showed that blockade of CCR2 signaling during early, 1-4 wks post-surgery or moderate, 4-8 wks post-surgery, OA was sufficient to decrease pain measures, with sustained improvement at later stages, after treatment was stopped. CONCLUSIONS: Our data highlight the potential efficacy of antagonizing CCR2 at early stages to slow the progression of post-injury OA and, in addition, improve pain symptoms.


Subject(s)
Benzoxazines/pharmacology , Bone and Bones/drug effects , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Menisci, Tibial/drug effects , Osteoarthritis/pathology , Receptors, CCR2/antagonists & inhibitors , Spiro Compounds/pharmacology , Animals , Bone and Bones/pathology , Disease Models, Animal , Disease Progression , Hypertrophy , Matrix Metalloproteinase 13/drug effects , Matrix Metalloproteinase 13/metabolism , Menisci, Tibial/surgery , Mice , Osteoarthritis/metabolism , Osteophyte , Receptors, CCR2/physiology , Sclerosis , Tibial Meniscus Injuries
2.
J Biomed Nanotechnol ; 12(4): 811-30, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27301207

ABSTRACT

The treatment of glioblastoma (GBM) is a challenge for the biomedical research since cures remain elusive. Its current therapy, consisted on surgery, radiotherapy, and concomitant chemotherapy with temozolomide (TMZ), is often uneffective. Here, we proposed the use of zoledronic acid (ZOL) as a potential agent for the treatment of GBM. Our group previously developed self-assembling nanoparticles, also named PLCaPZ NPs, to use ZOL in the treatment of prostate cancer. Here, we updated the previously developed nanoparticles (NPs) by designing transferrin (Tf)-targeted self-assembling NPs, also named Tf-PLCaPZ NPs, to use ZOL in the treatment of brain tumors, e.g., GBM. The efficacy of Tf-PLCaPZ NPs was evaluated in different GBM cell lines and in an animal model of GBM, in comparison with PLCaPZ NPs and free ZOL. Tf-PLCaPZ NPs were characterized by a narrow size distribution and a high incorporation efficiency of ZOL. Moreover, the presence of Tf significantly reduced the hemolytic activity of the formulation. In vitro, in LN229 cells, a significant uptake and cell growth inhibition after treatment with Tf-PLCaPZ NPs was achieved. Moreover, the sequential therapy of TMZ and Tf-PLCaPZ NPs lead to a superior therapeutic activity compared to their single administration. The results obtained in mice xenografted with U373MG, revealed a significant anticancer activity of Tf-PLCaPZ NPs, while the tumors remained unaffected with free TMZ. These promising results introduce a novel type of easy-to-obtain NPs for the delivery of ZOL in the treatment of GBM tumors.


Subject(s)
Diphosphonates/administration & dosage , Glioblastoma/therapy , Imidazoles/administration & dosage , Nanocapsules/chemistry , Receptors, Transferrin/metabolism , Transferrin/metabolism , Transferrin/pharmacokinetics , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diffusion , Diphosphonates/chemistry , Glioblastoma/pathology , Imidazoles/chemistry , Male , Mice , Mice, Nude , Molecular Targeted Therapy/methods , Nanocapsules/ultrastructure , Transferrin/chemistry , Treatment Outcome , Zoledronic Acid
3.
Diabetologia ; 56(1): 162-72, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23070058

ABSTRACT

AIMS/HYPOTHESIS: Downregulation of levels of endothelial progenitor cells (EPCs) during in-vitro short-term exposure to high glucose concentrations relates to reduced activity of silent information regulator 1 (SIRT1) and increased synthesis of platelet-activating factor (PAF). We investigated the possible relationship between PAF and SIRT1 pathways in EPCs during altered glucose homeostasis. METHODS: SIRT1 and PAF receptor (PAF-R) levels were determined by western blot, RT-PCR and confocal laser-scanning microscopy. In-vivo experiments were performed on 48 type 2 diabetic patients (25 with poor glycaemic control and 23 with good glycaemic control) and 20 control individuals. In-vitro experiments with the PAF-R antagonist CV3988 were performed on EPCs isolated from leucocyte-rich buffy coat of healthy human donors. RESULTS: Decreased SIRT1 protein levels were observed in EPCs from type 2 diabetic patients compared with control individuals (p < 0.01). Notably, the SIRT1 level was consistently lower in patients with poor glycaemic control than in those with good glycaemic control (p < 0.01). Diabetic patients also showed an upregulation of PAF-Rs; this response occurred to a greater extent in individuals with poor glycaemic control than in those with good glycaemic control. In-vitro experiments confirmed that EPCs respond to PAF stimulation with decreased SIRT1 protein and SIRT1 mRNA levels. Moreover, reduction of SIRT1 levels and activity were abolished by CV3988. CONCLUSIONS/INTERPRETATION: These findings unveil a link between PAF and SIRT1 pathways in EPCs that contributes to the deleterious effect of hyperglycaemia on the functional properties of EPCs, crucial in diabetes and peripheral vascular complications.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Down-Regulation , Endothelium, Vascular/pathology , Hyperglycemia/etiology , Platelet Membrane Glycoproteins/agonists , Receptors, G-Protein-Coupled/agonists , Signal Transduction , Sirtuin 1/metabolism , Adult , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Adult Stem Cells/pathology , Aged , Blood Buffy Coat/pathology , Cell Count , Cell Separation , Cells, Cultured , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/pathology , Down-Regulation/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Humans , Male , Middle Aged , Phospholipid Ethers/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Membrane Glycoproteins/antagonists & inhibitors , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Sirtuin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...