Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 29(18): 5397-5414, 2023 09.
Article in English | MEDLINE | ID: mdl-37395653

ABSTRACT

Reports of forest sensitivity to climate change are based largely on the study of overstory trees, which contribute significantly to forest growth and wood supply. However, juveniles in the understory are also critical to predict future forest dynamics and demographics, but their sensitivity to climate remains less known. In this study, we applied boosted regression tree analysis to compare the sensitivity of understory and overstory trees for the 10 most common tree species in eastern North America using growth information from an unprecedented network of nearly 1.5 million tree records from 20,174 widely distributed, permanent sample plots across Canada and the United States. Fitted models were then used to project the near-term (2041-2070) growth for each canopy and tree species. We observed an overall positive effect of warming on tree growth for both canopies and most species, leading to an average of 7.8%-12.2% projected growth gains with climate change under RCP 4.5 and 8.5. The magnitude of these gains peaked in colder, northern areas for both canopies, while growth declines are projected for overstory trees in warmer, southern regions. Relative to overstory trees, understory tree growth was less positively affected by warming in northern regions, while displaying more positive responses in southern areas, likely driven by the buffering effect of the canopy from warming and climate extremes. Observed differences in climatic sensitivity between canopy positions underscore the importance of accounting for differential growth responses to climate between forest strata in future studies to improve ecological forecasts. Furthermore, latitudinal variation in the differential sensitivity of forest strata to climate reported here may help refine our comprehension of species range shift and changes in suitable habitat under climate change.


Subject(s)
Ecosystem , Forests , Canada , Climate Change
2.
Proc Natl Acad Sci U S A ; 120(2): e2212780120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595673

ABSTRACT

Large projected increases in forest disturbance pose a major threat to future wood fiber supply and carbon sequestration in the cold-limited, Canadian boreal forest ecosystem. Given the large sensitivity of tree growth to temperature, warming-induced increases in forest productivity have the potential to reduce these threats, but research efforts to date have yielded contradictory results attributed to limited data availability, methodological biases, and regional variability in forest dynamics. Here, we apply a machine learning algorithm to an unprecedented network of over 1 million tree growth records (1958 to 2018) from 20,089 permanent sample plots distributed across both Canada and the United States, spanning a 16.5 °C climatic gradient. Fitted models were then used to project the near-term (2050 s time period) growth of the six most abundant tree species in the Canadian boreal forest. Our results reveal a large, positive effect of increasing thermal energy on tree growth for most of the target species, leading to 20.5 to 22.7% projected gains in growth with climate change under RCP 4.5 and 8.5. The magnitude of these gains, which peak in the colder and wetter regions of the boreal forest, suggests that warming-induced growth increases should no longer be considered marginal but may in fact significantly offset some of the negative impacts of projected increases in drought and wildfire on wood supply and carbon sequestration and have major implications on ecological forecasts and the global economy.


Subject(s)
Taiga , Trees , Canada , Ecosystem , Forests , Climate Change
3.
Nature ; 608(7923): 552-557, 2022 08.
Article in English | MEDLINE | ID: mdl-35948636

ABSTRACT

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Subject(s)
Global Warming , Seasons , Temperature , Trees , Acclimatization , Biomass , Carbon Dioxide/metabolism , Carbon Sequestration , Climate Models , Forests , Global Warming/statistics & numerical data , North America , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Time Factors , Trees/anatomy & histology , Trees/classification , Trees/growth & development , Trees/metabolism , Wood/growth & development , Wood/metabolism
4.
Glob Chang Biol ; 28(2): 542-556, 2022 01.
Article in English | MEDLINE | ID: mdl-34606657

ABSTRACT

Despite great concern for drought-driven forest mortality, the effects of frequent low-intensity droughts have been largely overlooked in the boreal forest because of their negligible impacts over the short term. In this study, we used data from 6876 permanent plots distributed across most of the Canadian boreal zone to assess the effects of repeated low-intensity droughts on forest mortality. Specifically, we compared the relative impact of sequential years under low-intensity dry conditions with the effects of variables related to the intensity of dry conditions, stand characteristics, and local climate. Then, we searched for thresholds in forest mortality as a function of the number of years between two forest surveys affected by dry conditions of any intensity. Our results showed that, in general, frequent low-intensity dry conditions had stronger effects on forest mortality than the intensity of the driest conditions in the plot. Frequent low-intensity dry conditions acted as an inciting factor of forest mortality exacerbated by stand characteristics and environmental conditions. Overall, the mortality of forests dominated by shade-tolerant conifers was significantly and positively related to frequent low-intensity dry conditions, supporting, in some cases, the existence of thresholds delimiting contrasting responses to drought. In mixtures with broadleaf species, however, sequential dry conditions had a negligible impact. The effects of frequent dry conditions on shade-intolerant forests mainly depended on local climate, inciting or mitigating the mortality of forests located in wet places and dominated by broadleaf species or jack pine, respectively. Our results highlight the importance of assessing not only climate-driven extreme events but also repeated disturbances of low intensity. In the long term, the smooth response of forests to dry conditions might abruptly change leading to disproportional mortality triggered by accumulated stress conditions. Forest and wildlife managers should consider the cumulative effects of climate change on mortality to avoid shortfalls in timber and habitat.


Subject(s)
Droughts , Taiga , Canada , Climate Change , Forests , Trees
5.
Tree Physiol ; 42(2): 304-316, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34312673

ABSTRACT

Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.


Subject(s)
Tracheophyta , Trees , Climate Change , Droughts , Forests , Porosity , Water , Xylem
6.
Glob Chang Biol ; 28(5): 1884-1902, 2022 03.
Article in English | MEDLINE | ID: mdl-34854165

ABSTRACT

Many modelling approaches have been developed to project climate change impacts on forests. By analysing 'comparable' yet distinct variables (e.g. productivity, growth, dominance, biomass, etc.) through different structures, parameterizations and assumptions, models can yield different outcomes to rather similar initial questions. This variability can lead to some confusion for forest managers when developing strategies to adapt forest management to climate change. In this study, we standardized results from seven different models (Habitat suitability, trGam, StandLEAP, Quebec Landscape Dynamics, PICUS, LANDIS-II and LPJ-LMfire) to provide a simple and comprehensive assessment of the uncertainty and consensus in future performance (decline, status quo, improvement) for six tree species in Quebec under two radiative forcing scenarios (RCP 4.5 and RCP 8.5). Despite a large diversity of model types, we found a high level of agreement (73.1%) in projected species' performance across species, regions, scenarios and time periods. Low agreements in model outcomes resulted from small dissensions among models. Model agreement was much higher for cold-tolerant species (up to 99.9%), especially in southernmost forest regions and under RCP 8.5, indicating that these species are especially sensitive to increased climate forcing in the southern part of their distribution range. Lower agreement was found for thermophilous species (sugar maple, yellow birch) in boreal regions under RCP 8.5 mostly as a result of the way the different models are handling natural disturbances (e.g. wildfires) and lags in the response of populations (forest inertia or migration capability) to climate change. Agreement was slightly higher under high anthropogenic climate forcing, suggesting that important thresholds in species-specific performance might be crossed if radiative forcing reach values as high as those projected under RCP 8.5. We expect that strong agreement among models despite their different assumptions, predictors and structure should inspire the development of forest management strategies to be better adapted to climate change.


Subject(s)
Climate Change , Trees , Ecosystem , Forests , Quebec , Trees/physiology
7.
Glob Chang Biol ; 25(10): 3462-3471, 2019 10.
Article in English | MEDLINE | ID: mdl-31271698

ABSTRACT

Boreal forests are facing profound changes in their growth environment, including warming-induced water deficits, extended growing seasons, accelerated snowmelt, and permafrost thaw. The influence of warming on trees varies regionally, but in most boreal forests studied to date, tree growth has been found to be negatively affected by increasing temperatures. Here, we used a network of Pinus sylvestris tree-ring collections spanning a wide climate gradient the southern end of the boreal forest in Asia to assess their response to climate change for the period 1958-2014. Contrary to findings in other boreal regions, we found that previously negative effects of temperature on tree growth turned positive in the northern portion of the study network after the onset of rapid warming. Trees in the drier portion did not show this reversal in their climatic response during the period of rapid warming. Abundant water availability during the growing season, particularly in the early to mid-growing season (May-July), is key to the reversal of tree sensitivity to climate. Advancement in the onset of growth appears to allow trees to take advantage of snowmelt water, such that tree growth increases with increasing temperatures during the rapidly warming period. The region's monsoonal climate delivers limited precipitation during the early growing season, and thus snowmelt likely covers the water deficit so trees are less stressed from the onset of earlier growth. Our results indicate that the growth response of P. sylvestris to increasing temperatures strongly related to increased early season water availability. Hence, boreal forests with sufficient water available during crucial parts of the growing season might be more able to withstand or even increase growth during periods of rising temperatures. We suspect that other regions of the boreal forest may be affected by similar dynamics.


Subject(s)
Taiga , Trees , Asia , Forests , Seasons , Water
8.
Ecol Lett ; 22(1): 119-127, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30411456

ABSTRACT

Severe droughts can impart long-lasting legacies on forest ecosystems through lagged effects that hinder tree recovery and suppress whole-forest carbon uptake. However, the local climatic and edaphic factors that interact to affect drought legacies in temperate forests remain unknown. Here, we pair a dataset of 143 tree ring chronologies across the mesic forests of the eastern US with historical climate and local soil properties. We found legacy effects to be widespread, the magnitude of which increased markedly in diffuse porous species, sites with deep water tables, and in response to late-season droughts (August-September). Using an ensemble of downscaled climate projections, we additionally show that our sites are projected to drastically increase in water deficit and drought frequency by the end of the century, potentially increasing the size of legacy effects by up to 65% and acting as a significant process shaping forest composition, carbon uptake and mortality.


Subject(s)
Droughts , Groundwater , Climate Change , Forests , Trees , Water , Wood
9.
Nat Commun ; 9(1): 3213, 2018 08 10.
Article in English | MEDLINE | ID: mdl-30097584

ABSTRACT

Predicted increases in temperature and aridity across the boreal forest region have the potential to alter timber supply and carbon sequestration. Given the widely-observed variation in species sensitivity to climate, there is an urgent need to develop species-specific predictive models that can account for local conditions. Here, we matched the growth of 270,000 trees across a 761,100 km2 region with detailed site-level data to quantify the growth responses of the seven most common boreal tree species in Eastern Canada to changes in climate. Accounting for spatially-explicit species-specific responses, we find that while 2 °C of warming may increase overall forest productivity by 13 ± 3% (mean ± SE) in the absence of disturbance, additional warming could reverse this trend and lead to substantial declines exacerbated by reductions in water availability. Our results confirm the transitory nature of warming-induced growth benefits in the boreal forest and highlight the vulnerability of the ecosystem to excess warming and drying.


Subject(s)
Climate Change , Trees/growth & development , Models, Biological , Quebec , Species Specificity , Temperature , Water
10.
Glob Chang Biol ; 24(6): 2339-2351, 2018 06.
Article in English | MEDLINE | ID: mdl-29460369

ABSTRACT

Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.


Subject(s)
Climate Change , Droughts , Forests , Environmental Monitoring , North America , Seasons , Soil , Temperature , Trees/growth & development , Water
11.
PLoS One ; 12(12): e0189444, 2017.
Article in English | MEDLINE | ID: mdl-29281697

ABSTRACT

Increasing access to extensively replicated and broadly distributed tree-ring collections has led to a greater use of these large data sets to investigate climate forcing on tree growth. However, the number of chronologies added to large accessible databases is declining and few are updated, while chronologies are often sparsely distributed and are more representative of marginal growing environments. On the other hand, National Forest Inventories (NFI), although poorly replicated at the plot level as compared to classic dendrochronological sampling, contain a large amount of tree-ring data with high spatial density designed to be spatially representative of the forest cover. We propose an a posteriori approach to validating tree-ring measurements and dating, selecting individual tree-ring width time series, and building average chronologies at various spatial scales based on an extensive collection of ring width measurements of nearly 94,000 black spruce trees distributed over a wide area and collected as part of the NFI in the province of Quebec, Canada. Our results show that reliable signals may be derived at various spatial scales (from 37 to 583,000 km2) from NFI increment core samples. Signals from independently built chronologies are spatially coherent with each other and well-correlated with independent reference chronologies built at the stand level. We thus conclude that tree-ring data from NFIs provide an extraordinary opportunity to strengthen the spatial and temporal coverage of tree-ring data and to improve coordination with other contemporary measurements of forest growth to provide a better understanding of tree growth-climate relationships over broad spatial scales.


Subject(s)
Climate , Forests , Trees , Ecosystem , Quebec
12.
Environ Monit Assess ; 186(12): 8191-202, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25139238

ABSTRACT

The projected increase in atmospheric N deposition and air/soil temperature will likely affect soil nutrient dynamics in boreal ecosystems. The potential effects of these changes on soil ion fluxes were studied in a mature balsam fir stand (Abies balsamea [L.] Mill) in Quebec, Canada that was subjected to 3 years of experimentally increased soil temperature (+4 °C) and increased inorganic N concentration in artificial precipitation (three times the current N concentrations using NH4NO3). Soil element fluxes (NO3, NH4, PO4, K, Ca, Mg, SO4, Al, and Fe) in the organic and upper mineral horizons were monitored using buried ion-exchange membranes (PRS™ probes). While N additions did not affect soil element fluxes, 3 years of soil warming increased the cumulative fluxes of K, Mg, and SO4 in the forest floor by 43, 44, and 79 %, respectively, and Mg, SO4, and Al in the mineral horizon by 29, 66, and 23 %, respectively. We attribute these changes to increased rates of soil organic matter decomposition. Significant interactions of the heating treatment with time were observed for most elements although no clear seasonal patterns emerged. The increase in soil K and Mg in heated plots resulted in a significant but small K increase in balsam fir foliage while no change was observed for Mg. A 6-15 % decrease in foliar Ca content with soil warming could be related to the increase in soil-available Al in heated plots, as Al can interfere with the root uptake of Ca.


Subject(s)
Environmental Monitoring/instrumentation , Nitrogen/analysis , Soil Pollutants/analysis , Canada , Ecosystem , Environmental Monitoring/methods , Ion Exchange Resins/chemistry , Soil , Taiga , Temperature , Trees
13.
Tree Physiol ; 33(5): 516-26, 2013 May.
Article in English | MEDLINE | ID: mdl-23604743

ABSTRACT

A 20-40% reduction in soil moisture is projected for the boreal forest of Eastern Canada for the period 2070-99 relative to 1971-2000. In order to better predict the effects of a reduced water supply on the growth of balsam fir (Abies balsamea (L.) Mill.), a dominant tree species of the boreal forest, we simulated 2 consecutive years of summer droughts (starting in July) by means of throughfall exclusion. Four 100-m(2) plots were established in 2010 with polyethylene sheets maintained 1.3-2 m aboveground and redirecting the water outside the plots. Wood microcores were extracted weekly from mature trees from April to October 2011 to analyse the time dynamics of wood formation in that year. The number of tracheids formed during and before treatment and their anatomical characteristics were determined through microscopic analyses. The growth of lateral and terminal branches and the water potential of balsam fir seedlings were also monitored. Throughfall exclusion significantly reduced soil water content by 5.8% in 2010 and 10.5% in 2011. Xylogenesis was affected significantly by the treatment. Tracheids were 16.1% smaller in diameter and their cell wall was 14.1% thicker during both years. The treatment delayed by more than a week the start of the tracheid differentiation process in the second year with a concomitant decrease (26%) in the number of tracheids produced. The seedlings displayed a 32% reduction in growth and a 40% reduction in leaf water potential. Our results suggest that a future regime of increased frequency and intensity of droughts could have negative effects on the duration of xylogenesis and the production of xylem cells in balsam fir.


Subject(s)
Abies/growth & development , Xylem/growth & development , Abies/cytology , Abies/physiology , Cell Differentiation , Cell Wall , Dehydration , Droughts , Quebec , Seasons , Seedlings/cytology , Seedlings/growth & development , Seedlings/physiology , Soil , Trees , Weather , Wood/growth & development , Xylem/cytology , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...