Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 19433, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31857609

ABSTRACT

The aim of this work was to evaluate the influence of Arthrospira platensis F&M-C256 (spirulina) incorporation on the nutritional and functional properties of "crostini", a leavened bakery product largely consumed in Italy and Europe. Sourdough was used as leavening and fermentation agent and three concentrations of A. platensis F&M-C256 were tested: 2%, 6% and 10% (w/w). Despite a lower volume increase compared to the control, the A. platensis F&M-C256 "crostini" doughs reached a technological appropriate volume after fermentation. At the end of fermentation, no significant differences in microorganisms concentrations were observed. A. platensis F&M-C256 "crostini" showed higher protein content compared to the control. Considering the European Commission Regulation on nutritional claims, "crostini" incorporated with 6% and 10% biomass can be claimed to be a "source of protein". Six and ten percent A. platensis "crostini" also presented significantly higher antioxidant capacity and phenolics. A significantly lower value of in vitro dry matter and protein digestibility between A. platensis F&M-C256 "crostini" and the control was found. The overall acceptability decreased with increasing A. platensis F&M-C256 addition. The combination of spirulina biomass addition and the sourdough technology led to the development of a novel microalgae-based bakery product with nutritional and functional features.


Subject(s)
Bread , Functional Food , Microalgae , Spirulina , Fermentation
2.
Biotechnol Bioeng ; 114(10): 2204-2210, 2017 10.
Article in English | MEDLINE | ID: mdl-28627710

ABSTRACT

Phaeodactylum tricornutum is a widely studied diatom and has been proposed as a source of oil and polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA). Recent studies indicate that lipid accumulation occurs under nutritional stress. Aim of this research was to determine how changes in nitrogen availability affect productivity, oil yield, and fatty acid (FA) composition of P. tricornutum UTEX 640. After preliminary laboratory trials, outdoor experiments were carried out in 40-L GWP® reactors under different nitrogen regimes in batch. Nitrogen replete cultures achieved the highest productivity of biomass (about 18 g m-2 d-1 ) and EPA (about 0.35 g m-2 d-1 ), whereas nitrogen-starved cultures achieved the highest FA productivity (about 2.6 g m-2 d-1 ). The annual potential yield of P. tricornutum grown outdoors in GWP® reactors is 730 kg of EPA per hectare under nutrient-replete conditions and 5,800 kg of FA per hectare under nitrogen starvation. Biotechnol. Bioeng. 2017;114: 2204-2210. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Subject(s)
Diatoms/physiology , Diatoms/radiation effects , Eicosapentaenoic Acid/biosynthesis , Nitrogen/metabolism , Oils/metabolism , Photobioreactors , Cell Proliferation/physiology , Cell Proliferation/radiation effects , Eicosapentaenoic Acid/isolation & purification , Equipment Design , Equipment Failure Analysis , Light , Oils/isolation & purification , Photosynthesis/physiology , Photosynthesis/radiation effects , Radiation Dosage
3.
Biotechnol Bioeng ; 111(5): 956-64, 2014 May.
Article in English | MEDLINE | ID: mdl-23904253

ABSTRACT

The effect of light quality on cell size and cell cycle, growth rate, productivity, photosynthetic efficiency and biomass composition of the marine prasinophyte Tetraselmis suecica F&M-M33 grown in 2-L flat panel photobioreactors illuminated with light emitting diodes (LEDs) of different colors was investigated. Biomass productivity and photosynthetic efficiency were comparable between white and red light, while under blue and green light productivity decreased to less than half and photosynthetic efficiency to about one third. Differences in cell size and number correlated with the cell cycle phase. Under red light cells were smaller and more motile. Chlorophyll content was strongly reduced with red and enhanced with blue light, while carotenoids and gross biomass composition were not affected by light quality. The eicosapentaenoic acid content increased under red light. Red light can substitute white light without affecting productivity of T. suecica F&M-M33, leading to smaller and more motile cells and increased eicosapentaenoic acid content. Red LEDs can thus be profitably used for the production of this microalga for aquaculture.


Subject(s)
Chlorophyta , Photobioreactors , Photosynthesis/physiology , Analysis of Variance , Biomass , Chlorophyta/chemistry , Chlorophyta/growth & development , Chlorophyta/physiology , Chlorophyta/radiation effects , Color , Eicosapentaenoic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...