Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 33(3): A53-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26974942

ABSTRACT

Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10 deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.


Subject(s)
Color Perception/physiology , Magnetic Resonance Imaging , Space Perception/physiology , Visual Fields/physiology , Adult , Contrast Sensitivity , Female , Humans , Male , Photic Stimulation , Psychophysics
2.
PLoS One ; 9(9): e106156, 2014.
Article in English | MEDLINE | ID: mdl-25181007

ABSTRACT

Translation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.


Subject(s)
Brain/physiology , Deep Sedation , Nerve Net/physiology , Animals , Magnetic Resonance Imaging , Male , Rats, Sprague-Dawley , Reproducibility of Results
3.
PLoS One ; 8(12): e84241, 2013.
Article in English | MEDLINE | ID: mdl-24358348

ABSTRACT

INTRODUCTION: Functional connectivity (FC) studies have gained immense popularity in the evaluation of several neurological disorders, such as Alzheimer's disease (AD). AD is a complex disorder, characterised by several pathological features. The problem with FC studies in patients is that it is not straightforward to focus on a specific aspect of pathology. In the current study, resting state functional magnetic resonance imaging (rsfMRI) is applied in a mouse model of amyloidosis to assess the effects of amyloid pathology on FC in the mouse brain. METHODS: Nine APP/PS1 transgenic and nine wild-type mice (average age 18.9 months) were imaged on a 7T MRI system. The mice were anesthetized with medetomidine and rsfMRI data were acquired using a gradient echo EPI sequence. The data were analysed using a whole brain seed correlation analysis and interhemispheric FC was evaluated using a pairwise seed analysis. Qualitative histological analyses were performed to assess amyloid pathology, inflammation and synaptic deficits. RESULTS: The whole brain seed analysis revealed an overall decrease in FC in the brains of transgenic mice compared to wild-type mice. The results showed that interhemispheric FC was relatively preserved in the motor cortex of the transgenic mice, but decreased in the somatosensory cortex and the hippocampus when compared to the wild-type mice. The pairwise seed analysis confirmed these results. Histological analyses confirmed the presence of amyloid pathology, inflammation and synaptic deficits in the transgenic mice. CONCLUSIONS: In the current study, rsfMRI demonstrated decreased FC in APP/PS1 transgenic mice compared to wild-type mice in several brain regions. The APP/PS1 transgenic mice had advanced amyloid pathology across the brain, as well as inflammation and synaptic deficits surrounding the amyloid plaques. Future studies should longitudinally evaluate APP/PS1 transgenic mice and correlate the rsfMRI findings to specific stages of amyloid pathology.


Subject(s)
Amyloidosis/physiopathology , Brain Mapping , Brain/physiopathology , Magnetic Resonance Imaging , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Brain/metabolism , Brain/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Disease Models, Animal , Male , Mice
4.
J Vis ; 11(8)2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21752924

ABSTRACT

Psychophysical sensitivity to isoluminant chromatic modulation declines at temporal frequencies beyond 4 Hz, whereas chromatically opponent cells of the afferent visual pathway (long- to middle-wavelength (L-M) cone-opponent or short-wavelength (S) cone cells) show responses at much higher temporal frequencies, indicating a central limitation in temporal processing capacity. Here, we sought to localize this limit in cortical retinotopic visual areas. We used fMRI to investigate responses of lateral geniculate nucleus and cortical visual areas in humans to isoluminant chromatic modulation as a function of temporal frequency (2-12 Hz). Our results suggest that L-M cone-opponent and S-cone signals are processed in LGN up to 12 Hz. In all visual areas except MT (middle temporal) and V3a, S-cone responses declined steeply with temporal frequency, implying that psychophysical sensitivity loss to blue-yellow modulation might occur early within these areas. While V1 showed robust L-M responses up to 12 Hz, there was a progressive falloff of responses with temporal frequency as information is transferred from V1 to higher areas (V2, V3, and V4), suggesting that, in humans, temporal limitation in perception of red-green chromatic modulation likely results from limited processing capacity of higher ventral extrastriate areas.


Subject(s)
Color Perception/physiology , Color Vision/physiology , Magnetic Resonance Imaging , Visual Cortex/physiology , Adult , Brain Mapping/methods , Cluster Analysis , Color , Female , Geniculate Bodies/physiology , Humans , Male , Photic Stimulation/methods , Psychophysics/methods , Retinal Cone Photoreceptor Cells/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...