Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Geohealth ; 7(3): e2022GH000674, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36968153

ABSTRACT

Urban agriculture is emerging as a method to improve food security and public health in cities across the United States. However, an increased risk of exposure to heavy metals and metalloids (HMM) exists through interaction with contaminated soil. Community-engaged research (CEnR) is one method that can promote the inclusion of all partners when studying exposures such as HMM in soil. Researchers and community gardeners co-designed this study to measure the concentrations of lead (Pb), using X-Ray Fluorescence (XRF) verified with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in soils from 19 urban agricultural and residential sites in the Westside of Atlanta and three rural sites in Georgia. Seventeen other HMM were measured but not included in this study, because they did not pose risks to the community comparable to elevated Pb levels. Pb concentrations were compared to the Environmental Protection Agency (EPA)'s regional screening levels (RSLs) for residential soil and the University of Georgia (UGA) extension service's low-risk levels (LRLs) for agriculture. Soils from the majority of sites had levels below EPA RSLs for Pb, yet above the UGA LRL. However, soil Pb concentrations were three times higher than the EPA RSL on some sites that contained metal refining waste or slag. Our findings led to direct action by local and federal government agencies to initiate the cleanup of slag residue. Studies involving exposures to communities should engage those affected throughout the process for maximum impact.

2.
Article in English | MEDLINE | ID: mdl-36841843

ABSTRACT

BACKGROUND: African Americans (AAs) experience higher rates of preterm birth and fetal growth restriction relative to other pregnant populations. Differential in utero exposure to environmental chemicals may partially explain these health disparities, as AAs are disproportionately exposed to environmental hazards. OBJECTIVE: We examined the individual and mixture effects of non-persistent chemicals and persistent organic pollutants (POPs) on gestational age at birth and birthweight for gestational age z-scores within a prospective cohort of pregnant AAs. METHODS: First-trimester serum and urine samples obtained from participants within the Atlanta African American Maternal-Child cohort were analyzed for 43 environmental chemicals, including per-and polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides, pyrethroid insecticides, phthalates, bisphenol A, nicotine, and the primary metabolite of delta-9-tetrahydrocannabinol. Linear regression was used to estimate individual associations between chemicals and gestational age and birthweight z-scores (N ranging from 107 to 523). Mixture associations were estimated using quantile g-computation, principal component (PC) analyses, and hierarchical Bayesian kernel machine regression among complete cases (N = 86). RESULTS: Using quantile g-computation, increasing all chemical exposures by one quantile was modestly associated with a reduction in gestational age (mean change per quartile increase = -0.47, 95% CI = -1.56, 0.61) and birthweight z-scores (mean change per quartile increase = -0.49, 95% CI = -1.14, 0.15). All PCs were associated with a reduction in birthweight z-scores; associations were greatest in magnitude for the two PCs reflecting exposure to combined tobacco, insecticides, PBDEs, and phthalates. In single pollutant models, we observed inconsistent and largely non-significant associations. SIGNIFANCE: We conducted multiple targeted exposure assessment methods to quantify levels of environmental chemicals and leveraged mixture methods to quantify their joint effects on gestational age and birthweight z-scores. Our findings suggest that prenatal exposure to multiple classes of persistent and non-persistent chemicals is associated with reduced gestational age and birthweight z-scores in AAs. IMPACT: African Americans (AAs) experience higher rates of preterm birth and fetal growth restriction relative to other pregnant populations. Differential in utero exposure to environmental chemicals may partially explain these health disparities, as AAs are disproportionately exposed to environmental hazards. In the present study, we analyzed serum and urine samples for levels of 43 environmental chemicals. We used quantile g-computation, principal component analysis, and BKMR to assess associations between chemical exposure mixtures and adverse birth outcomes. Our findings suggest that prenatal exposure to multiple classes of chemicals is associated with reduced birthweight z-scores, a proxy for fetal growth, in AAs.

3.
Article in English | MEDLINE | ID: mdl-35908438

ABSTRACT

Co-exposure to tobacco and marijuana has become common in areas where recreational marijuana use is legal. To assist in the determination of the combined health risks of this co-exposure, an analytical method capable of simultaneously measuring tobacco and marijuana metabolites is needed to reduce laboratory costs and the required sample volume. So far, no such analytical method exists. Thus, we developed and validated a method to simultaneously quantify urinary levels of trans-3'-hydroxycotinine (3OH-COT), cotinine (COT), and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (COOH-THC) to assess co-exposure to tobacco and marijuana. Urine (200 µL) was spiked with labelled internal standards and enzymatically hydrolyzed to liberate the conjugated analytes before extraction using solid-supported liquid-liquid extraction (SLE) with ethyl acetate serving as an eluent. The target analytes were separated on a C18 (4.6 × 100 mm, 5 µm) analytical column with a gradient mobile phase elution and analyzed using tandem mass spectrometry with multiple reaction monitoring of target ion transitions. Positive electrospray ionization (ESI) was used for 3OH-COT and COT, while negative ESI was used for COOH-THC. The total run time was 13 min. The extraction recoveries were 18.4-23.9 % (3OH-COT), 65.1-96.8 % (COT), and 80.6-95.4 % (COOH-THC). The method limits of quantification were 5.0 ng/mL (3OH-COT) and 2.5 ng/mL (COT and COOH-THC). The method showed good accuracy (82.5-98.5 %) and precision (1.22-6.21 % within-day precision and 1.42-6.26 % between-day precision). The target analytes were stable for at least 144 h inside the autosampler (10 °C). The analyses of reference materials and 146 urine samples demonstrated good method performance. The use of a 96-well plate for preparation makes the method useful for the analysis of large numbers of samples.


Subject(s)
Cannabis , Hallucinogens , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Dronabinol , Liquid-Liquid Extraction , Tandem Mass Spectrometry/methods , Nicotiana
4.
J Sci Food Agric ; 101(14): 5861-5871, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33788973

ABSTRACT

BACKGROUND: Two Fusarium fungi, F. oxysporum and F. proliferatum, have been recognized as major pathogenic fungi that cause postharvest decay of chili fruits. Ozone and some toxic chemicals are used to control pathogenic infections, leading to longer storage lives of agricultural commodities. However, these chemicals may pose some risks to the applicators and the environment. Therefore, alternative, easy-to-use fumigants for effective control of Fusarium infections in harvested fresh chilies are needed. RESULTS: Two endophytic fungi, Trichoderma afroharzianum strain MFLUCC19-0090 and T. afroharzianum strain MFLUCC19-0091, were isolated from Schefflera leucantha leaves. Their volatile compounds were investigated for antifungal activities against F. oxysporum and F. proliferatum. In vitro results showed that the volatile compounds produced by each strain inhibited pathogen growth. Additionally, the Trichoderma-derived volatile compounds significantly reduced Fusarium-related disease severity and incidence percentages in the inoculated fresh chilies. Antifungal properties of the volatile compounds were found to be specific to the species of the tested pathogens (MFLUCC19-0090 greatly suppressed F. oxysporum and MFLUCC19-0091 greatly suppressed F. proliferatum). Seventy-three volatile compounds were detected from both strains. Among the major volatile compounds detected, phenyl ethyl alcohol was found to possess the strongest antifungal activity against both pathogens. CONCLUSION: These Trichoderma-derived volatile compounds may be used as alternative fumigants for controlling Fusarium rot in harvested fresh chilies. The successful use of volatile compounds as biofumigants can prevent significant market losses and, more importantly, may reduce the health hazards caused by Fusarium-associated mycotoxin exposures among consumers. © 2021 Society of Chemical Industry.


Subject(s)
Antifungal Agents/pharmacology , Capsicum/microbiology , Fusarium/drug effects , Plant Diseases/prevention & control , Trichoderma/chemistry , Volatile Organic Compounds/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Araliaceae/microbiology , Benzoquinones , Cyclohexanones , Endophytes/chemistry , Endophytes/isolation & purification , Endophytes/metabolism , Fusarium/physiology , Hypocreales/chemistry , Hypocreales/isolation & purification , Hypocreales/metabolism , Plant Diseases/microbiology , Trichoderma/isolation & purification , Trichoderma/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism
5.
Chem Biodivers ; 16(10): e1900371, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31464066

ABSTRACT

The essential oils of five Lavandula stoechas cultivars grown in Thailand were characterized for their volatile compounds using GC-FID and GC/MS methods as well as screened for antibacterial and antioxidant activities. Dried aerial parts, including flowers and stems from each cultivar, were subjected to hydrodistillation for 4 h. The essential oil yields were 0.18 %-0.82 % w/w. Of the 95 compounds detected and identified, 1,8-cineole, fenchone, and camphor were considered the major compounds. Essential oil from each cultivar demonstrated different patterns of antibacterial activity and a variety of antioxidant properties. The highest antibacterial activity, MIC=0.39 mg mL-1 , was observed from the essential oil of L. stoechas 'major' (against Klebsiella pneumoniae and Salmonella typhimurium) and the essential oil of L. stoechas 'white lavender' (against S. typhimurium). The essential oil of L. stoechas×viridis 'St. Brelade' possessed the highest antioxidant capacity, as determined by the DPPH and ABTS assays (IC50 of 67.65 and 89.26 mg mL-1 , respectively). The results indicated that some of these essential oils could be used as key ingredients in lavender oil products in Thailand to increase their therapeutic efficacy, depending on their intended application.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Klebsiella pneumoniae/drug effects , Lavandula/chemistry , Oils, Volatile/pharmacology , Salmonella typhimurium/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Flowers/chemistry , Lavandula/growth & development , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Picrates/antagonists & inhibitors , Plant Components, Aerial/chemistry , Sulfonic Acids/antagonists & inhibitors , Thailand
6.
Crit Rev Anal Chem ; 46(2): 93-105, 2016.
Article in English | MEDLINE | ID: mdl-25562585

ABSTRACT

The ability to quantify levels of target analytes in biological samples accurately and precisely in biomonitoring involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants.


Subject(s)
Environmental Exposure/analysis , Hazardous Substances/analysis , Tandem Mass Spectrometry
7.
Article in English | MEDLINE | ID: mdl-22309774

ABSTRACT

Melamine and cyanuric acid have been implicated as adulterants in baby formula in China and pet foods in North America. In China, the effect of melamine or melamine-cyanuric acid adulteration lead to kidney stone development and acute renal failure in thousands of Chinese infants. A selective and sensitive analytical method was developed to measure melamine in human urine in order to evaluate the extent of potential health implications resulting from the consumption of these types of adulterated products in the general US population. This method involves extracting melamine from human urine using cation-exchange solid-phase extraction, chromatographically separating it from its urinary matrix co-extractants on a silica-based, strong-cation exchange analytical column using high performance liquid chromatography, and analysis using positive mode electrospray ionization tandem mass spectrometry. Quantification was performed using modified, matrix-based isotope dilution calibration covering the concentration range of 0.50-100 ng/mL. The limit of detection, calculated using replicates of blank and low level spiked samples, was 0.66 ng/mL and the relative standard deviations were between 6.89 and 14.9%. The relative recovery of melamine was 101-106%. This method was tested for viability by analyzing samples collected from the general US population. Melamine was detected in 76% of the samples tested, with a geometric mean of 2.37 ng/mL, indicating that this method is suitable for reliably detecting background exposures to melamine or other chemicals from which it can be derived.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange/methods , Tandem Mass Spectrometry/methods , Triazines/urine , Drug Stability , Humans , Limit of Detection , Reproducibility of Results , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization/methods , Triazines/isolation & purification , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...