Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res (Camb) ; 13(3): tfae086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835821

ABSTRACT

Background: Skin secretions of toads are widely used in medicine all over the world for their antiviral, anti-infective, and cardiotonic properties. Because these secretions are mostly employed to combat blood parasite infection, it is important to understand their potential toxic effects on human erythrocytes. Therefore, the objective of the current investigation was to elucidate the effects of Duttaphrynus melanostictus (Schneider) skin extracts on the physiology of human erythrocytes. Methods: Toads captured from their natural habitat were separated into three groups according to their body size. Hydroalcoholic extracts of toad skin were prepared by reflux heating. These extracts were then evaluated for their hemolytic and hemoglobin denaturation potential. The effects of the extracts on cytosolic and membrane-bound enzymes of human erythrocytes were assessed. Results: The hemolysis and hemoglobin denaturation caused by these extracts correlated positively with the respective toad sizes. Extracts from medium and large toads led to increased osmotic fragility even at near iso-osmotic concentrations. Biochemical analysis of hemolysate showed that the treatment induced a shift of metabolic flux toward the glutathione pathway. Analysis of membrane-bound enzymes revealed a significant decrease in the activity of Na+/K+ ATPase and acetylcholinesterase. SDS-PAGE analysis of the erythrocyte membrane did not show the band of tropomodulin for the cells treated with 1000 𝜇g/ml extract from large toads. Conclusions: In conclusion, the present study demonstrates that the toxicity of toad skin secretions aggravates with the size of the animal and interferes with the physiology of human erythrocytes, leading to their membrane disruption and rapid lysis.

2.
J Food Prot ; 85(11): 1538-1552, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35723555

ABSTRACT

ABSTRACT: This multi-institutional study assessed the efficacy of Enterococcus faecium NRRL B-2354 as a nonpathogenic Salmonella surrogate for thermal processing of nonfat dry milk powder, peanut butter, almond meal, wheat flour, ground black pepper, and date paste. Each product was analyzed by two laboratories (five independent laboratories total), with the lead laboratory inoculating (E. faecium or a five-strain Salmonella enterica serovar cocktail of Agona, Reading, Tennessee, Mbandaka, and Montevideo) and equilibrating the product to the target water activity before shipping. Both laboratories subjected samples to three isothermal treatments (between 65 and 100°C). A log-linear and Bigelow model was fit to survivor data via one-step regression. On the basis of D80°C values estimated from the combined model, E. faecium was more thermally resistant (P < 0.05) than Salmonella in nonfat dry milk powder (DEf-80°C, 100.2 ± 5.8 min; DSal-80°C, 28.9 ± 1.0 min), peanut butter (DEf-80°C, 133.5 ± 3.1 min; DSal-80°C, 57.6 ± 1.5 min), almond meal (DEf-80°C, 34.2 ± 0.4 min; DSal-80°C, 26.1 ± 0.2 min), ground black pepper (DEf-80°C, 3.2 ± 0.8 min; DSal-80°C, 1.5 ± 0.1 min), and date paste (DEf-80°C, 1.5 ± 0.0 min; DSal-80°C, 0.5 ± 0.0 min). Although the combined laboratory D80°C for E. faecium was lower (P < 0.05) than for Salmonella in wheat flour (DEf-80°C, 9.4 ± 0.1 min; DSal-80°C, 10.1 ± 0.2 min), the difference was ∼7%. The zT values for Salmonella in all products and for E. faecium in milk powder, almond meal, and date paste were not different (P > 0.05) between laboratories. Therefore, this study demonstrated the impact of standardized methodologies on repeatability of microbial inactivation results. Overall, E. faecium NRRL B-2354 was more thermally resistant than Salmonella, which provides support for utilizing E. faecium as a surrogate for validating thermal processing of multiple low-moisture products. However, product composition should always be considered before making that decision.


Subject(s)
Enterococcus faecium , Prunus dulcis , Colony Count, Microbial , Flour , Food Handling/methods , Food Microbiology , Hot Temperature , Powders , Salmonella/physiology , Triticum , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...