Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405902

ABSTRACT

Osteogenic differentiation is essential for bone development and metabolism, but the underlying gene regulatory networks have not been well investigated. We differentiated mesenchymal stem cells, derived from 20 human induced pluripotent stem cell lines, into preosteoblasts and osteoblasts, and performed systematic RNA-seq analyses of 60 samples for differential gene expression. We noted a highly significant correlation in expression patterns and genomic proximity among transcription factor (TF) and long noncoding RNA (lncRNA) genes. We identified TF-TF regulatory networks, regulatory roles of lncRNAs on their neighboring coding genes for TFs and splicing factors, and differential splicing of TF, lncRNA, and splicing factor genes. TF-TF regulatory and gene co-expression network analyses suggested an inhibitory role of TF KLF16 in osteogenic differentiation. We demonstrate that in vitro overexpression of human KLF16 inhibits osteogenic differentiation and mineralization, and in vivo Klf16+/- mice exhibit increased bone mineral density, trabecular number, and cortical bone area. Thus, our model system highlights the regulatory complexity of osteogenic differentiation and identifies novel osteogenic genes.

2.
Front Cell Dev Biol ; 11: 1148013, 2023.
Article in English | MEDLINE | ID: mdl-37113767

ABSTRACT

Introduction: Congenital dyserythropoietic anaemia (CDA) type IV has been associated with an amino acid substitution, Glu325Lys (E325K), in the transcription factor KLF1. These patients present with a range of symptoms, including the persistence of nucleated red blood cells (RBCs) in the peripheral blood which reflects the known role for KLF1 within the erythroid cell lineage. The final stages of RBCs maturation and enucleation take place within the erythroblastic island (EBI) niche in close association with EBI macrophages. It is not known whether the detrimental effects of the E325K mutation in KLF1 are restricted to the erythroid lineage or whether deficiencies in macrophages associated with their niche also contribute to the disease pathology. Methods: To address this question, we generated an in vitro model of the human EBI niche using induced pluripotent stem cells (iPSCs) derived from one CDA type IV patient as well as two iPSC lines genetically modified to express an KLF1-E325K-ERT2 protein that could be activated with 4OH-tamoxifen. The one patient iPSC line was compared to control lines from two healthy donors and the KLF1-E325K-ERT2 iPSC line to one inducible KLF1-ERT2 line generated from the same parental iPSCS. Results: The CDA patient-derived iPSCs and iPSCs expressing the activated KLF1-E325K-ERT2 protein showed significant deficiencies in the production of erythroid cells with associated disruption of some known KLF1 target genes. Macrophages could be generated from all iPSC lines but when the E325K-ERT2 fusion protein was activated, we noted the generation of a slightly less mature macrophage population marked by CD93. A subtle trend in their reduced ability to support RBC enucleation was also associated with macrophages carrying the E325K-ERT2 transgene. Discussion: Taken together these data support the notion that the clinically significant effects of the KLF1-E325K mutation are primarily associated with deficiencies in the erythroid lineage but it is possible that deficiencies in the niche might have the potential to exacerbate the condition. The strategy we describe provides a powerful approach to assess the effects of other mutations in KLF1 as well as other factors associated with the EBI niche.

4.
Stem Cell Reports ; 16(12): 3036-3049, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34739849

ABSTRACT

A library of well-characterized human induced pluripotent stem cell (hiPSC) lines from clinically healthy human subjects could serve as a useful resource of normal controls for in vitro human development, disease modeling, genotype-phenotype association studies, and drug response evaluation. We report generation and extensive characterization of a gender-balanced, racially/ethnically diverse library of hiPSC lines from 40 clinically healthy human individuals who range in age from 22 to 61 years. The hiPSCs match the karyotype and short tandem repeat identities of their parental fibroblasts, and have a transcription profile characteristic of pluripotent stem cells. We provide whole-genome sequencing data for one hiPSC clone from each individual, genomic ancestry determination, and analysis of mendelian disease genes and risks. We document similar transcriptomic profiles, single-cell RNA-sequencing-derived cell clusters, and physiology of cardiomyocytes differentiated from multiple independent hiPSC lines. This extensive characterization makes this hiPSC library a valuable resource for many studies on human biology.


Subject(s)
Health , Induced Pluripotent Stem Cells/cytology , Adult , Calcium Signaling , Cell Differentiation , Cell Line , Clone Cells , Ethnicity , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , Genetic Variation , Heart Atria/cytology , Heart Ventricles/cytology , Humans , Male , Middle Aged , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Risk Factors , Young Adult
6.
PLoS Comput Biol ; 16(12): e1008491, 2020 12.
Article in English | MEDLINE | ID: mdl-33362275

ABSTRACT

Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has been very limited. Thus, new approaches are necessary to explore the genetic architecture of insulin resistance. To that end, we generated an iPSC library across the spectrum of insulin sensitivity in humans. RNA-seq based analysis of 310 induced pluripotent stem cell (iPSC) clones derived from 100 individuals allowed us to identify differentially expressed genes between insulin resistant and sensitive iPSC lines. Analysis of the co-expression architecture uncovered several insulin sensitivity-relevant gene sub-networks, and predictive network modeling identified a set of key driver genes that regulate these co-expression modules. Functional validation in human adipocytes and skeletal muscle cells (SKMCs) confirmed the relevance of the key driver candidate genes for insulin responsiveness.


Subject(s)
Gene Regulatory Networks , Induced Pluripotent Stem Cells/metabolism , Insulin Resistance/genetics , Insulin/metabolism , Humans
7.
Stem Cell Res ; 45: 101837, 2020 05.
Article in English | MEDLINE | ID: mdl-32413789

ABSTRACT

Hemoglobin production during mammalian development is characterized by temporal switches of the genes coding for the α- and ß-globin chains. Defects in this controlled process can lead to hemoglobinapathies such as sickle cell disease and ß-thalassemia. The ability of human embryonic stem cells (hESC) to proceed through hematopoiesis could provide a clinically useful source of red blood cells. However, hESC-derived red cells exhibit an embryonic/fetal, but not adult, mode of hemoglobin expression. The resource described here is a hESC line engineered to express a reporter from its adult globin promoter, providing a screening platform for small molecules that lead to efficient induction of adult globin.


Subject(s)
Gene Editing , Transcription Activator-Like Effector Nucleases , Adult , Animals , Cell Line , Embryonic Stem Cells , Hematopoiesis , Humans , Transcription Activator-Like Effector Nucleases/genetics
8.
Stem Cell Res Ther ; 10(1): 228, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358052

ABSTRACT

BACKGROUND: Human-induced pluripotent stem cells (hiPSCs) show a great promise as a renewable source of cells with broad biomedical applications. Since insulin has been used in the maintenance of hiPSCs, in this study we explored the role of insulin in culture of these cells. METHODS: We report conditions for insulin starvation and stimulation of hiPSCs. Crystal violet staining was used to study the adhesion and proliferation of hiPSCs. Apoptosis and cell cycle assays were performed through flow cytometry. Protein arrays were used to confirm phosphorylation targets, and mRNA sequencing was used to evaluate the effect of transcriptome. RESULTS: Insulin improved the seeding and proliferation of hiPSCs. We also observed an altered cell cycle profile and increase in apoptosis in hiPSCs in the absence of insulin. Furthermore, we confirmed phosphorylation of key components of insulin signaling pathway in the presence of insulin and demonstrated the significant effect of insulin on regulation of the mRNA transcriptome of hiPSCs. CONCLUSION: Insulin is a major regulator of seeding, proliferation, phosphorylation and mRNA transcriptome in hiPSCs. Collectively, our work furthers our understanding of human pluripotency and paves the way for future studies that use hiPSCs for modeling genetic ailments affecting insulin signaling pathways.


Subject(s)
Cell Proliferation/drug effects , Insulin/pharmacology , Transcriptome/drug effects , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Phosphorylation/drug effects , RNA, Messenger/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
9.
PLoS One ; 13(10): e0203597, 2018.
Article in English | MEDLINE | ID: mdl-30289930

ABSTRACT

Research in photobiology is currently limited by a lack of devices capable of delivering precise and tunable irradiation to cells in a high-throughput format. This limits researchers to using expensive commercially available or custom-built light sources which make it difficult to replicate, standardize, optimize, and scale experiments. Here we present an open-source Microplate Photoirradiation System (MPS) developed to enable high-throughput light experiments in standard 96 and 24-well microplates for a variety of applications in photobiology research. This open-source system features 96 independently controlled LEDs (4 LEDs per well in 24-well), Wi-Fi connected control and programmable graphical user interface (GUI) for control and programming, automated calibration GUI, and modular control and LED boards for maximum flexibility. A web-based GUI generates light program files containing irradiation parameters for groups of LEDs. These parameters are then uploaded wirelessly, stored and used on the MPS to run photoirradiation experiments inside any incubator. A rapid and semi-quantitative porphyrin metabolism assay was also developed to validate the system in wild-type fibroblasts. Protoporphyrin IX (PpIX) fluorescence accumulation was induced by incubation with 5-aminolevulinic acid (ALA), a photosensitization method leveraged clinically to destroy malignant cell types in a process termed photodynamic therapy (PDT), and cells were irradiated with 405nm light with varying irradiance, duration and pulsation parameters. Immediately after light treatment with the MPS, subsequent photobleaching was measured in live, adherent cells in both 96-well and a 24-well microplates using a microplate reader. Results demonstrate the utility and reliability of the Microplate Photoirradiation System to irradiate cells with precise irradiance and timing parameters in order to measure PpIx photobleaching kinetics in live adherent cells and perform comparable experiments with both 24 and 96 well microplate formats. The high-throughput capability of the MPS enabled measurement of enough irradiance conditions in a single microplate to fit PpIX fluorescence to a bioexponential decay model of photobleaching, as well as reveal a dependency of photobleaching on duty-cycle-but not frequency-in a pulsed irradiance regimen.


Subject(s)
Photobiology/methods , Photochemotherapy/methods , Photosensitivity Disorders , Protoporphyrins/chemistry , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/radiation effects , Computer Graphics , Humans , Light , Photobleaching , Protoporphyrins/radiation effects , Radiation , Wireless Technology
10.
Hum Genet ; 137(2): 183-193, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29417219

ABSTRACT

Mosaicism due to somatic mutations can cause multiple diseases including cancer, developmental and overgrowth syndromes, neurodevelopmental disorders, autoinflammatory diseases, and atrial fibrillation. With the increased use of next generation sequencing technology, multiple tools have been developed to identify low-frequency variants, specifically from matched tumor-normal tissues in cancer studies. To investigate whether mosaic variants are implicated in congenital heart disease (CHD), we developed a pipeline using the cancer somatic variant caller MuTect to identify mosaic variants in whole-exome sequencing (WES) data from a cohort of parent/affected child trios (n = 715) and a cohort of healthy individuals (n = 416). This is a novel application of the somatic variant caller designed for cancer to WES trio data. We identified two cases with mosaic KMT2D mutations that are likely pathogenic for CHD, but conclude that, overall, mosaicism detectable in peripheral blood or saliva does not account for a significant portion of CHD etiology.


Subject(s)
Exome Sequencing , Genetic Variation , Heart Defects, Congenital/genetics , Mosaicism , Child , Exome/genetics , Heart Defects, Congenital/physiopathology , High-Throughput Nucleotide Sequencing , Humans , Mutation , Software
11.
Cell Stem Cell ; 20(4): 518-532.e9, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28017796

ABSTRACT

Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network, pathway, and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications.


Subject(s)
Genetic Heterogeneity , Induced Pluripotent Stem Cells/metabolism , Transcription, Genetic , Alleles , Bayes Theorem , Cell Differentiation/genetics , Cell Line , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Genetic Association Studies , Humans , Polycomb-Group Proteins/metabolism , Quantitative Trait Loci/genetics , Reproducibility of Results
12.
Stem Cell Res ; 17(1): 93-96, 2016 07.
Article in English | MEDLINE | ID: mdl-27558609

ABSTRACT

We have generated a MIXL1-eGFP reporter human embryonic stem cell (hESC) line using TALEN-based genome engineering. This line accurately traces endogenous MIXL1 expression via an eGFP reporter to mesendodermal precursor cells. The utility of the MIXL1-eGFP reporter hESC line lies in the prospective isolation, lineage tracing, and developmental and mechanistic studies of MIXL1+ cell populations.

13.
Stem Cells Transl Med ; 5(11): 1562-1574, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27400791

ABSTRACT

: Induced pluripotent stem cells (iPSCs) can be efficiently differentiated into retinal pigment epithelium (RPE), offering the possibility of autologous cell replacement therapy for retinal degeneration stemming from RPE loss. The generation and maintenance of epithelial apical-basolateral polarity is fundamental for iPSC-derived RPE (iPSC-RPE) to recapitulate native RPE structure and function. Presently, no criteria have been established to determine clonal or donor based heterogeneity in the polarization and maturation state of iPSC-RPE. We provide an unbiased structural, molecular, and physiological evaluation of 15 iPSC-RPE that have been derived from distinct tissues from several different donors. We assessed the intact RPE monolayer in terms of an ATP-dependent signaling pathway that drives critical aspects of RPE function, including calcium and electrophysiological responses, as well as steady-state fluid transport. These responses have key in vivo counterparts that together help determine the homeostasis of the distal retina. We characterized the donor and clonal variation and found that iPSC-RPE function was more significantly affected by the genetic differences between different donors than the epigenetic differences associated with different starting tissues. This study provides a reference dataset to authenticate genetically diverse iPSC-RPE derived for clinical applications. SIGNIFICANCE: The retinal pigment epithelium (RPE) is essential for maintaining visual function. RPE derived from human induced pluripotent stem cells (iPSC-RPE) offer a promising cell-based transplantation therapy for slowing or rescuing RPE-induced visual function loss. For effective treatment, iPSC-RPE must recapitulate the physiology of native human RPE. A set of physiologically relevant functional assays are provided that assess the polarized functional activity and maturation state of the intact RPE monolayer. The present data show that donor-to-donor variability exceeds the tissue-to-tissue variability for a given donor and provides, for the first time, criteria necessary to identify iPSC-RPE most suitable for clinical application.

14.
Cell Rep ; 13(3): 504-515, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26456833

ABSTRACT

Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germline PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223's function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Leukemia, Myelomonocytic, Juvenile/metabolism , Myeloid Cells/cytology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Sialic Acid Binding Ig-like Lectin 3/metabolism , Cells, Cultured , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/pathology , MicroRNAs/genetics , Mutation , Myeloid Cells/metabolism , Sialic Acid Binding Ig-like Lectin 3/genetics , Up-Regulation
15.
Nat Protoc ; 10(3): 413-25, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25654758

ABSTRACT

Lung and airway epithelial cells generated in vitro from human pluripotent stem cells (hPSCs) have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of hPSCs into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development, and it takes ∼50 d. First, definitive endoderm (DE) is induced in the presence of high concentrations of activin A. Subsequently, lung-biased anterior foregut endoderm (AFE) is specified by sequential inhibition of bone morphogenetic protein (BMP), transforming growth factor-ß (TGF-ß) and Wnt signaling. AFE is then ventralized by applying Wnt, BMP, fibroblast growth factor (FGF) and retinoic acid (RA) signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, cAMP and glucocorticoid agonism. This protocol is conducted in defined conditions, it does not involve genetic manipulation of the cells and it results in cultures in which the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells.


Subject(s)
Cell Differentiation/physiology , Epithelial Cells/cytology , Pluripotent Stem Cells/cytology , Respiratory System/cytology , Stem Cells/cytology , Tissue Engineering/methods , Humans , In Vitro Techniques/methods
16.
PLoS One ; 9(7): e101316, 2014.
Article in English | MEDLINE | ID: mdl-25010565

ABSTRACT

The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC) reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN). When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.


Subject(s)
Flow Cytometry/methods , Heart Atria/cytology , Induced Pluripotent Stem Cells/cytology , Muscle Proteins/genetics , Myocytes, Cardiac/cytology , Proteolipids/genetics , Calcium/metabolism , Cell Differentiation , Chromosomes, Artificial, Bacterial/genetics , Electrophysiological Phenomena , Gene Expression , Genes, Reporter/genetics , Humans , Induced Pluripotent Stem Cells/metabolism
17.
J Clin Invest ; 124(6): 2378-95, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24762436

ABSTRACT

Cord blood (CB) cells that express CD34 have extensive hematopoietic capacity and rapidly divide ex vivo in the presence of cytokine combinations; however, many of these CB CD34+ cells lose their marrow-repopulating potential. To overcome this decline in function, we treated dividing CB CD34+ cells ex vivo with several histone deacetylase inhibitors (HDACIs). Treatment of CB CD34+ cells with the most active HDACI, valproic acid (VPA), following an initial 16-hour cytokine priming, increased the number of multipotent cells (CD34+CD90+) generated; however, the degree of expansion was substantially greater in the presence of both VPA and cytokines for a full 7 days. Treated CD34+ cells were characterized based on the upregulation of pluripotency genes, increased aldehyde dehydrogenase activity, and enhanced expression of CD90, c-Kit (CD117), integrin α6 (CD49f), and CXCR4 (CD184). Furthermore, siRNA-mediated inhibition of pluripotency gene expression reduced the generation of CD34+CD90+ cells by 89%. Compared with CB CD34+ cells, VPA-treated CD34+ cells produced a greater number of SCID-repopulating cells and established multilineage hematopoiesis in primary and secondary immune-deficient recipient mice. These data indicate that dividing CB CD34+ cells can be epigenetically reprogrammed by treatment with VPA so as to generate greater numbers of functional CB stem cells for use as transplantation grafts.


Subject(s)
Epigenesis, Genetic , Fetal Blood/cytology , Fetal Blood/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Antigens, CD34/metabolism , Culture Media, Serum-Free , Cytokines/pharmacology , Epigenesis, Genetic/drug effects , Fetal Blood/transplantation , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Heterografts , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Mice, SCID , RNA, Small Interfering/genetics , Thy-1 Antigens/metabolism , Valproic Acid/pharmacology
18.
Stem Cells ; 32(1): 191-203, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24022884

ABSTRACT

In the mouse embryo and differentiating embryonic stem cells, the hematopoietic, endothelial, and cardiomyocyte lineages are derived from Flk1+ mesodermal progenitors. Here, we report that surface expression of Podocalyxin (Podxl), a member of the CD34 family of sialomucins, can be used to subdivide the Flk1+ cells in differentiating embryoid bodies at day 4.75 into populations that develop into distinct mesodermal lineages. Definitive hematopoietic potential was restricted to the Flk1+Podxl+ population, while the Flk1-negative Podxl+ population displayed only primitive erythroid potential. The Flk1+Podxl-negative population contained endothelial cells and cardiomyocyte potential. Podxl expression distinguishes Flk1+ mesoderm populations in mouse embryos at days 7.5, 8.5, and 9.5 and is a marker of progenitor stage primitive erythroblasts. These findings identify Podxl as a useful tool for separating distinct mesodermal lineages.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endothelial Cells/metabolism , Mesoderm/metabolism , Pluripotent Stem Cells/metabolism , Sialoglycoproteins/biosynthesis , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Endothelial Cells/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mesoderm/cytology , Mice , Mice, Transgenic , Pluripotent Stem Cells/cytology , Sialoglycoproteins/metabolism , Tissue Array Analysis
19.
Cell Stem Cell ; 12(6): 748-60, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746980

ABSTRACT

Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like cells (hepatic cells) from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2/FLK-1), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR but, when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells and to non-cell-autonomously support the functional maturation of cocultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts, adult hepatocytes, and adult cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors and a functional receptor instructing early liver development.


Subject(s)
Evolution, Molecular , Hepatocytes/cytology , Hepatocytes/metabolism , Liver/growth & development , Stem Cells/cytology , Stem Cells/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Humans , Liver/cytology , Liver/metabolism , Mice , Mice, Inbred Strains
20.
Blood ; 120(13): e35-44, 2012 Sep 27.
Article in English | MEDLINE | ID: mdl-22898598

ABSTRACT

Induced pluripotent stem cell (iPSC) therapeutics are a promising treatment for genetic and infectious diseases. To assess engraftment, risk of neoplastic formation, and therapeutic benefit in an autologous setting, testing iPSC therapeutics in an appropriate model, such as the pigtail macaque (Macaca nemestrina; Mn), is crucial. Here, we developed a chemically defined, scalable, and reproducible specification protocol with bone morphogenetic protein 4, prostaglandin-E2 (PGE2), and StemRegenin 1 (SR1) for hematopoietic differentiation of Mn iPSCs. Sequential coculture with bone morphogenetic protein 4, PGE2, and SR1 led to robust Mn iPSC hematopoietic progenitor cell formation. The combination of PGE2 and SR1 increased CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cell yield by 6-fold. CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cells isolated on the basis of CD34 expression and cultured in SR1 expanded 3-fold and maintained this long-term repopulating HSC phenotype. Purified CD34(high) cells exhibited 4-fold greater hematopoietic colony-forming potential compared with unsorted hematopoietic progenitors and had bilineage differentiation potential. On the basis of these studies, we calculated the cell yields that must be achieved at each stage to meet a threshold CD34(+) cell dose that is required for engraftment in the pigtail macaque. Our protocol will support scale-up and testing of iPSC-derived CD34(high) cell therapies in a clinically relevant nonhuman primate model.


Subject(s)
Antigens, CD34/metabolism , Cell Differentiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Animals , Blotting, Western , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Lineage , Cells, Cultured , Colony-Forming Units Assay , Dinoprostone/genetics , Dinoprostone/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Lymphocytes/cytology , Lymphocytes/metabolism , Macaca , Myeloid Cells/cytology , Myeloid Cells/metabolism , Purines/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Virus Internalization , Wnt Proteins/genetics , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...