Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 274: 273-88, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24912027

ABSTRACT

Trimethyltin chloride (TMT) is a neurotoxicant producing neuronal degeneration and reactive astrogliosis in the mammalian central nervous system, especially the hippocampus. A previous magnetic resonance imaging investigation in TMT-treated rats evidenced dilation of lateral ventricles, also suggesting alterations in blood-brain barrier permeability and brain edema. Aquaporin 4 (AQP4), a glial water channel protein expressed mainly in the nervous system, is considered a specific marker of vascular permeability and thought to play an important role in brain edema (conditions). We studied AQP4 expression in the hippocampus and cerebral cortex of TMT-treated rats in order to explore the molecular mechanisms involved in brain edema occurring in these experimental conditions. Real-time PCR and western blotting data showed significant up-regulation of both AQP4 mRNA and protein levels starting 14 days after TMT treatment in the hippocampus and cortex. Parallel immunofluorescence studies indicated intense astrogliosis and AQP4 immunoreactivity diffusely pronounced in the hippocampal and cortex areas starting 14 days after TMT intoxication. In order to study the effects of TMT on vascular integrity, double-label immunofluorescence experiments for rat immunoglobulin G (IgG) and rat endothelial cell antigen-1 (RECA-1) or neuronal nuclei (NeuN) (endothelial and neuronal markers respectively) were performed. The results indicated, at 21 and 35 days after treatment, the presence of rat IgG in paravasal parenchyma and in some neuronal cells of the hippocampus and cortex. The extravasated IgG staining was temporally correlated with over-expression of neuronal vascular endothelial growth factor (VEGF) and the active phosphorylated form of its neuronal receptor (VEGFR-2P), suggesting that these factors may cooperate in mediating vascular leakage.


Subject(s)
Aquaporin 4/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Neurodegenerative Diseases/metabolism , Animals , Antigens, Nuclear/metabolism , Astrocytes/metabolism , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Immunoglobulin G/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phosphorylation , RNA, Messenger/metabolism , Rats, Wistar , Trimethyltin Compounds , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Neuroscience ; 174: 160-70, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21111789

ABSTRACT

Trimethyltin chloride (TMT) is known to produce neuronal damage in the rat hippocampus, especially in the CA(1)/CA(3) subfields, together with reactive astrogliosis. Previous studies indicate that in cultured rat hippocampal neurons the Ca(2+) cytosolic increase induced by TMT is correlated with apoptotic cell death, although some molecular aspects of the hippocampal neurodegeneration induced by this neurotoxicant still remain to be clarified. Cathepsin D (Cat D) is a lysosomal aspartic protease involved in some neurodegenerative processes and also seems to play an important role in the processes that regulate apoptosis. We investigated the specific activity and cellular expression of Cat D in the rat hippocampus in vivo and in cultured organotypic rat hippocampal slices. The role of Cat D in cell death processes and the mechanisms controlling Cat D were also investigated. Cat D activity was assayed in hippocampus homogenates of control and TMT-treated rats. In order to visualize the distribution of Cat D immunoreactivity in the hippocampus, double-label immunofluorescence for Cat D and Neu N, GFAP, OX42 was performed. In addition, in order to clarify the possible relationship between Cat D activity, neuronal calcium overload and neuronal death processes, organotypic hippocampal cultures were also treated with a Cat D inhibitor (Pepstatin A) or Calpain inhibitor (Calpeptin) or an intracellular Ca(2+) chelator (BAPTA-AM) in the presence of TMT. TMT treatment in rat hippocampus induced high levels of Cat D activity both in vivo and in vitro, in glial cells and in CA(3) neurons, where a marked TMT-induced neuronal loss also occurred. Cat D is actively involved in CA3 neuronal death and the protease increase is a calcium-Calpain dependent phenomenon.


Subject(s)
Cathepsin D/metabolism , Hippocampus/drug effects , Nerve Degeneration/enzymology , Trimethyltin Compounds/toxicity , Animals , Calcium/metabolism , Cell Death , Female , Hippocampus/enzymology , Hippocampus/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/pathology , Neuroglia/enzymology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats , Rats, Wistar , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...