Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(21): 13556-13563, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36194438

ABSTRACT

An efficient, straightforward, and one-pot synthesis of biologically relevant spiro-dihydropyridine oxindoles was described via readily available isatin, malononitrile, allenoate, and amines. The metal/organocatalyst-free, Et3N-mediated reaction proceeds via cascade spiro-cyclization of in situ generated Knoevenagel/aza-Michael adducts. The reaction has great flexibility over electron-rich and electron-poor substituents affording desired products in good to excellent yields. We have also demonstrated the selected spiro-dihydropyridines for late-stage diversification into new spiro-dihydropyridine hybrids of pharmaceutical relevance.


Subject(s)
Dihydropyridines , Spiro Compounds , Oxindoles , Cyclization , Stereoisomerism , Molecular Structure , Catalysis
2.
Chem Commun (Camb) ; 57(14): 1746-1749, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33480914

ABSTRACT

Base assisted divergent reactivity of isatins and allenoates has been achieved, which afforded diastereoselective spirofuran oxindoles and γ-functionalized allenoates. The DBU mediated Morita-Baylis-Hillman (MBH) reaction followed by the cascade annulation through the stabilized ß-ammonium enolate intermediate led to the spiro-framework, wherein DABCO furnished the γ-functionalized allenoates. The protocol offers access to biologically relevant functionalized oxindole scaffolds with an excellent substrate scope under mild reaction conditions.

3.
Bioorg Chem ; 105: 104375, 2020 12.
Article in English | MEDLINE | ID: mdl-33113410

ABSTRACT

Advanced glycation end products (AGEs) are implicated to be the key players in most of the diabetic complications. The AGE's interfere with the proteins heterogeneously, thereby rendering denaturation and the consequent loss of function and accumulation. Thus, a novel natural product inspired indeno[2,1-c]pyridinone (4a-4ad) molecular templates with AGE's trapping potential was designed through scaffold hopping approach and synthesized via facile two-step synthetic route. Amongst the tested indeno[2,1-c]pyridinone hybrids, 4i, 4x and 4aa exhibited excellent efficiency in trapping the AGE's. The percentage of antiglycation is measured by the analytical model system, i.e. via MG trapping capacity; here the compounds 4i, 4x and 4aa with 50.03%, 69.58%, and 93.37% respectively has displayed promising efficiency. In particular, 4aa demonstrated better activity than the positive control aminoguanidine (79.82%). The in-vitro toxicity of compounds was tested on L6 rat skeletal muscle cell lines revealed that none of the compounds showed any significant toxicity at concentrations up to 1000 µM.


Subject(s)
Biological Products/pharmacology , Drug Design , Glycation End Products, Advanced/antagonists & inhibitors , Pyridones/pharmacology , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Line , Dose-Response Relationship, Drug , Glycation End Products, Advanced/analysis , Humans , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Quantitative Structure-Activity Relationship
4.
ACS Appl Bio Mater ; 3(2): 772-778, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-35019281

ABSTRACT

Amines are ubiquitous in biological world, but are toxic and harmful in nature. Detection of biogenic amines that are released from spoiled seafood, meat, or dairy products is an important task to maintain the quality and safety of these packaged foods. To this endeavor, herein we report pyrylium salts that are capable of sensing various amines by rapid change of fluorescence color or intensity. In molecular level, this change of fluorescence is rooted to the formation of pyridine or analogous product that have distinct optical property. The pyrylium salts are capable of efficiently sensing amine vapors or amine solutions both in solid state and in solution state and thus demonstrating a multiphase sensing platform. Utilizing the excellent sensing property, we have employed our pyrylium compounds as spoilage indicator for food products such as fish, meat or cheese which relies on sensing biogenic amines released from these spoiled foods and provide optical response. Prominent change in visible and luminescence color was observed within 4-18 h of packaging at room temperature (∼33 °C). Considering the rapid response for biogenic amines, these molecular sensors have great potential to be utilized for food packaging industry, medical diagnostics, or other sensory devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...