Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31655299

ABSTRACT

Cells under stress generate reactive oxygen species (ROS) in excess, which causes mitochondrial dysfunction and stimulates the apoptotic cascade. However, mild stress or pre-conditioning lead to the evasion of apoptosis by activating mitogenic signaling, including the signaling of inhibitors of apoptosis proteins (IAPs), or by inactivating certain apoptotic molecules. The silkworm (Bombyx mori) is an important economic insect which serves as a model organism in biological research. Bombyx mori apoptotic protease inducing factor (BmApaf1), a death-related ced-3/Nedd2-like protein (BmDredd), and BmSurvivin-2 (BmSvv2) are known to play significant roles in metamorphosis. Azaserine is an analogue of glutamine and irreversibly inhibits glutamine-utilizing enzymes and cysteine-glutamate transporter genes EAAT2. In the present study, we experimentally demonstrated stress induced by azaserine along with the capacity of antioxidants to modulate apoptotic/anti-apoptotic gene expression in determining the fate of the larvae. We observed higher larval survival with higher azaserine dosages and attributed this to the quantum of ROS generated and AOEs response, which favoured the BmSvv2 expression. Meanwhile higher levels of ROS with concomitant changes in AOEs were found to be responsible for BmApaf1 and BmDredd expression, which reflected a higher mortality rate.


Subject(s)
Azaserine/pharmacology , Bombyx/drug effects , Bombyx/physiology , Oxidative Stress , Animals , Apoptosis/physiology , Apoptotic Protease-Activating Factor 1/metabolism , Caspases/metabolism , Drosophila Proteins/metabolism , Insect Proteins/metabolism , Reactive Oxygen Species/metabolism , Survivin/metabolism
2.
Genome Biol ; 18(1): 8, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28115022

ABSTRACT

BACKGROUND: Organophosphates are the most frequently and largely applied insecticide in the world due to their biodegradable nature. Gut microbes were shown to degrade organophosphates and cause intestinal dysfunction. The diabetogenic nature of organophosphates was recently reported but the underlying molecular mechanism is unclear. We aimed to understand the role of gut microbiota in organophosphate-induced hyperglycemia and to unravel the molecular mechanism behind this process. RESULTS: Here we demonstrate a high prevalence of diabetes among people directly exposed to organophosphates in rural India (n = 3080). Correlation and linear regression analysis reveal a strong association between plasma organophosphate residues and HbA1c but no association with acetylcholine esterase was noticed. Chronic treatment of mice with organophosphate for 180 days confirms the induction of glucose intolerance with no significant change in acetylcholine esterase. Further fecal transplantation and culture transplantation experiments confirm the involvement of gut microbiota in organophosphate-induced glucose intolerance. Intestinal metatranscriptomic and host metabolomic analyses reveal that gut microbial organophosphate degradation produces short chain fatty acids like acetic acid, which induces gluconeogenesis and thereby accounts for glucose intolerance. Plasma organophosphate residues are positively correlated with fecal esterase activity and acetate level of human diabetes. CONCLUSION: Collectively, our results implicate gluconeogenesis as the key mechanism behind organophosphate-induced hyperglycemia, mediated by the organophosphate-degrading potential of gut microbiota. This study reveals the gut microbiome-mediated diabetogenic nature of organophosphates and hence that the usage of these insecticides should be reconsidered.


Subject(s)
Gastrointestinal Microbiome , Gluconeogenesis , Glucose Intolerance , Insecticides/metabolism , Organophosphates/metabolism , Acetic Acid/metabolism , Animals , Biomarkers , Blood Glucose , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Disease Models, Animal , Feces/chemistry , Feces/enzymology , Gluconeogenesis/drug effects , Glucose Intolerance/drug therapy , Glucose Tolerance Test , Humans , Hyperglycemia/blood , Hyperglycemia/etiology , Hyperglycemia/metabolism , Insecticides/toxicity , Mice , Organophosphates/toxicity , Oxidative Stress
3.
Heart Lung Circ ; 25(10): 1013-20, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27067666

ABSTRACT

BACKGROUND: The discovery of PIWI-interacting RNAs (piRNAs) has fundamentally changed our understanding of post transcriptional regulation of transposons and other genes. Unlike miRNA and siRNA, the piRNAs are the most abundant but least studied RNA species in mammals. Although the expression of PIWI proteins and piRNAs has long been regarded as germline specific, increasing evidences suggest the expression of piRNAs in somatic cells. METHODS: In this study, the small RNA sequencing executed during induction of cardiac hypertrophy in both in vivo and in vitro conditions were annotated for the expression of piRNAs. The expression of piRNAs was validated by qPCR and RNA immunoprecipitation. In addition, the presence of piRNAs in circulation of myocardial infarction patients was studied by qPCR. RESULTS: We identified an abundant and altered expression of piRNAs during cardiac hypertrophy. The differentially expressed piRNAs was validated by qPCR and RNA immunoprecipitation. The significantly and differentially expressed piRNAs were predicted to target different retrotransposons and mRNAs in the rat genome. The detection of specific piRNA in serum of myocardial infarction patients suggests the potential of piRNA for diagnosis. CONCLUSION: Overall this study is the first to provide a whole-genome analysis of the large repertoire of piRNAs in the cardiac system and this would pave a new path to understanding the molecular aetiology of piRNA and retrotransposons in the physiology and pathology of the cardiac system.


Subject(s)
Cardiomegaly/metabolism , Gene Expression Regulation , RNA, Small Interfering/biosynthesis , Animals , Genome-Wide Association Study , Rats
4.
Ann Indian Acad Neurol ; 17(2): 147-54, 2014 Apr.
Article in English | MEDLINE | ID: mdl-25024563

ABSTRACT

Ever since Kiloh (1961)[2] coined the term pseudo-dementia, it has been used a little loosely for describing the cognitive deficits in depression, especially, which is found in old age. However, several diagnostic dilemmas persist regarding the nosological status of this condition. Teasing out these individual diagnostic problems is important not only for administering appropriate therapy, but also for preventing them from the unnecessary diagnostic assessments towards the other diagnoses. Thus, it is important to have a detailed knowledge of the cognitive or neuropsychological deficits in this condition. In this review, we start by addressing the important issue of diagnostic confusion between dementia and pseudo-dementia. Subsequently, we proceed by reviewing the present scientific literature on the cognitive deficits found in this clinical condition. For the sake of convenience, we will divide the cognitive deficits into: Memory deficitsExecutive function deficits andDeficits in speech and language domains. Finally, we will look at the progression of this condition to see the components of this condition, which can be actually called "Pseudo".

SELECTION OF CITATIONS
SEARCH DETAIL
...