Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 14(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35565420

ABSTRACT

A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.

2.
Int J Mol Sci ; 23(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35163649

ABSTRACT

Yin-Yang transcription factor 1 (YY1) is involved in tumor progression, metastasis and has been shown to be elevated in different cancers, including leukemia. The regulatory mechanism underlying YY1 expression in leukemia is still not understood. Bioinformatics analysis reveal three Hypoxia-inducible factor 1-alpha (HIF-1α) putative binding sites in the YY1 promoter region. The regulation of YY1 by HIF-1α in leukemia was analyzed. Mutation of the putative YY1 binding sites in a reporter system containing the HIF-1α promoter region and CHIP analysis confirmed that these sites are important for YY1 regulation. Leukemia cell lines showed that both proteins HIF-1α and YY1 are co-expressed under hypoxia. In addition, the expression of mRNA of YY1 was increased after 3 h of hypoxia conditions and affect several target genes expression. In contrast, chemical inhibition of HIF-1α induces downregulation of YY1 and sensitizes cells to chemotherapeutic drugs. The clinical implications of HIF-1α in the regulation of YY1 were investigated by evaluation of expression of HIF-1α and YY1 in 108 peripheral blood samples and by RT-PCR in 46 bone marrow samples of patients with pediatric acute lymphoblastic leukemia (ALL). We found that the expression of HIF-1α positively correlates with YY1 expression in those patients. This is consistent with bioinformatic analyses of several databases. Our findings demonstrate for the first time that YY1 can be transcriptionally regulated by HIF-1α, and a correlation between HIF-1α expression and YY1 was found in ALL clinical samples. Hence, HIF-1α and YY1 may be possible therapeutic target and/or biomarkers of ALL.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , YY1 Transcription Factor/metabolism , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Gene Expression Regulation, Neoplastic , Humans , Infant , Infant, Newborn
3.
J Clin Pharm Ther ; 46(3): 633-639, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33638195

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Midazolam is a drug that is metabolized by cytochrome P450 (CYP450) enzymes, particularly CYP3A4 and CYP3A5. The presence of single-nucleotide polymorphisms (SNPs) in the genes encoding these enzymes, such as CYP3A4*1B which is associated with low enzyme expression and activity and CYP3A5*3, has been associated with decrease in enzymatic activity and reduced drug clearance, with potential effects on drug levels and/or toxicity. The present study was conducted to determine the frequencies of the allelic variants of the CYP3A4 (rs2740574) and CYP3A5 (rs776746) genes and their effects on the plasma levels and clearance of intravenous midazolam in critically ill Mexican paediatric patients. METHODS: Seventy-two DNA samples were genotyped by real-time PCR with TaqMan probes. Plasma midazolam levels were determined at 3 and 24 h post infusion by high-performance liquid chromatography. RESULTS AND DISCUSSION: The allelic variant rs776746 (CYP3A5*3) was associated with high midazolam plasma levels; the median concentration in patients with the normal genotype (CC) <0.01 ng/ml (Q25 0.01-Q75 196.09), whereas patients with the allelic variant (TT+TC) had a median midazolam concentration of 320.3 ng/ml (Q25 37.51-Q75 529.51), p = 0.001. The median pharmacokinetic clearance rates were 0.10 L/kg/h (Q25 0.01-Q75 0.34) in patients with the allelic variant (TT+TC) and 0.03 L/kg/h (Q25 0.002-Q75 0.13) in patients with the normal genotype (CC), p = 0.042. WHAT IS NEW AND CONCLUSION: This is the first study that reports the frequency of the rs776746 polymorphism in critically ill paediatric patients, which is relevant, since carriers of the *1 allele synthesizing a functional enzyme may need higher doses to achieve adequate sedation. Our results show that compared with carriers of the normal allele, patients with the CYP3A5*3 allelic variant (rs776746) had increased plasma midazolam levels at 3 h after infusion discontinuation (320.3 ng/ml) and greater clearance (0.10 L/kg/h) of the drug.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Hypnotics and Sedatives/pharmacokinetics , Midazolam/pharmacokinetics , Adolescent , Child , Child, Preschool , Critical Illness , Female , Genotype , Half-Life , Humans , Infant , Male , Metabolic Clearance Rate , Mexico , Phenotype , Polymorphism, Single Nucleotide
4.
Cell Biochem Funct ; 39(4): 478-487, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33377261

ABSTRACT

Low levels of oxygen (hypoxia) have been reported in solid tumours. This hypoxic microenvironment modulates the expression of genes linked to a more aggressive disease. However, it is unclear if the expression of drug-metabolizing enzymes as cytochromes P450 (CYPs) is affected by hypoxia in cancer. We aimed to define which cytochromes are affected by hypoxia using a liver cancer model in vitro. For this purpose, we assessed whole-genome expression microarrays of HepG2 liver cancer cell line from free repository databases, looking for gene expression hypoxia-associated profiles and selected those cytochromes with significant differences. Then, we corroborated their mRNA expression and protein levels by RT-qPCR and western blot, respectively, as well as immunofluorescence. Based on microarray analysis, we found that the expression of CYP2S1 and CYP24A1 were up-regulated with at least twice fold change compared with normoxia. The levels of mRNA and protein of CYP2S1 and CYP24A1 were increased significantly in hypoxic conditions (P < .05), and this tendency was also observed by immunofluorescence assays. Our data show that the expression of cytochromes CYP2S1 and CYP24A1 are induced in hypoxia, being the first time that CYP24A1 expression is associated with tumour hypoxia; which might have consequences in cancer progression and drug resistance. SIGNIFICANCE OF THE STUDY: Hypoxia is among the most important factors for cellular adaptation to stress. Especially in cancer, a major public health issue, hypoxia plays a substantial role in angiogenesis, metastasis and resistance to therapy. Tumoral hypoxia has been described at least in the brain, breast, cervical, liver, renal, lung, pancreatic and renal cancer. However, the understanding of how hypoxia drives cancer progression is still a major challenge. One emerging question is the role of hypoxia over the expression of drug-metabolizing enzymes, with a significant impact on drug treatment. In this context, our paper focus on the effect of hypoxia on CYPs, which is an essential group of drug-metabolizing enzymes. We show that hypoxia induces the expression of two members of the CYPs family: CYP2S1 and CYP24A1. Importantly, CYP2S1 is a major metabolizer of carcinogenic substances being relevant that hypoxia could promote this function. Interestingly, CYP24A1 limits the action of the active form of vitamin D, which is an anti-proliferative factor in cancer. Our evidence shows for the first time that hypoxia can induce CYP24A1 expression, with a potential effect on cancer progression. Our contribution clarifies a particular effect of tumoral hypoxia and the implications will be useful in the understanding of the progression of cancer, the resistance to treatment and the development of alternative therapies.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Hypoxia/metabolism , Liver Neoplasms/metabolism , Tumor Hypoxia , Vitamin D3 24-Hydroxylase/metabolism , Computational Biology , Cytochrome P-450 Enzyme System/genetics , Humans , Liver Neoplasms/pathology , Tumor Cells, Cultured , Vitamin D3 24-Hydroxylase/genetics
5.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333716

ABSTRACT

This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning ("preventive protocol"; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation ("curative protocol"; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41-85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.

6.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118523, 2019 12.
Article in English | MEDLINE | ID: mdl-31401107

ABSTRACT

Multicellular Tumor Spheroids culture (MCTS) is an in vitro model mimicking the characteristics of the tumor microenvironment, such as hypoxia and acidosis, resulting in the presence of both proliferating and quiescent cell populations. lncRNA's is a novel group of regulatory molecules that participates in the acquisition of tumorigenic phenotypes. In the present work we evaluated the oncogenic association of an uncharacterized lncRNA (lncRNA-HAL) in the tumorigenic phenotype induced by the MCTS microenvironment. We measured lncRNA-HAL expression level in MCF-7-MCTS populations and under different hypoxic conditions by RT-qPCR. Afterwards, we silenced lncRNA-HAL expression by shRNAs and evaluated its effect in MCF-7 transcriptome (by RNAseq) and validated the modified cellular processes by proliferation, migration, and stem cells assays. Finally, we analyzed which proteins interacts with lncRNA-HAL by ChIRP assay, to propose a possible molecular mechanism for this lncRNA. We found that lncRNA-HAL is overexpressed in the internal quiescent populations (p27 positive populations) of MCF-7-MCTS, mainly in the quiescent stem cell population, being hypoxia one of the microenvironmental cues responsible of its overexpression. Transcriptome analysis of lncRNA-HAL knockdown MCF7 cells revealed that lncRNA-HAL effect is associated with proliferation, migration and cell survival mechanisms; moreover, lncRNA-HAL silencing increased cell proliferation and impaired cancer stem cell proportion and function, resulting in decreased tumor grafting in vivo. In addition, we found that this lncRNA was overexpressed in triple-negative breast cancer patients. Analysis by ChIRP assay showed that this nuclear lncRNA binds to histones and hnRNPs suggesting a participation at the chromatin level and transcriptional regulation. The results obtained in the present work suggest that the function of lncRNA-HAL is associated with quiescent stem cell populations, which in turn is relevant due to its implications in cancer cell survival and resistance against treatment in vivo. Altogether, our data highlights a new lncRNA whose expression is regulated by the tumor microenvironment and associated to stemness in breast cancer.


Subject(s)
Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Tumor Microenvironment/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle , Gene Silencing , Humans , MCF-7 Cells , Phenotype , RNA, Long Noncoding/metabolism , Tumor Cells, Cultured
7.
Oncol Rep ; 41(1): 178-190, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30320358

ABSTRACT

Medulloblastomas are among the most frequently diagnosed pediatric solid tumors, and drug resistance remains as the principal cause of treatment failure. Hypoxia and the subsequent activation of hypoxia­inducible factor 1α (HIF­1α) are considered key factors in modulating drug antitumor effectiveness, but the underlying mechanisms in medulloblastomas have not yet been clearly understood. The aim of the present study was to determine whether hypoxia induces resistance to cyclophosphamide (CPA) and ifosfamide (IFA) in DAOY medulloblastoma cells, whether the mechanism is dependent on HIF­1α, and whether involves the modulation of the expression of cytochromes P450 (CYP)2B6, 3A4 and 3A5 and the control of cell proliferation. Monolayer cultures of DAOY medulloblastoma cells were exposed for 24 h to moderate (1% O2) or severe (0.1% O2) hypoxia, and protein expression was evaluated by immunoblotting. Cytotoxicity was studied with the MTT assay and by Annexin V/PI staining and flow cytometry. Cell proliferation was determined by the trypan­blue exclusion assay and cell cycle by propidium iodide staining and flow cytometry. Hypoxia decreased CPA and IFA cytotoxicity in medulloblastoma cells, which correlated with a reduction in the protein levels of CYP2B6, CYP3A4 and CYP3A5 and inhibition of cell proliferation. These responses were dependent on hypoxia­induced HIF­1α activation, as evidenced by chemical inhibition of its transcriptional activity with 2­methoxyestradiol (2­ME), which enhanced the cytotoxic activity of CPA and IFA and increased apoptosis. Our results indicate that by stimulating HIF­1α activity, hypoxia downregulates the expression of CYP2B6, CYP3A4 and CYP3A5, that in turn leads to decreased conversion of CPA and IFA into their active forms and thus to diminished cytotoxicity. These results support that the combination of HIF­1α inhibitors and canonical antineoplastic agents provides a potential therapeutic alternative against medulloblastoma.


Subject(s)
Cerebellar Neoplasms/metabolism , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP3A/metabolism , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Medulloblastoma/metabolism , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Cyclophosphamide/pharmacology , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ifosfamide/pharmacology
8.
Oncol Lett ; 15(5): 6241-6250, 2018 May.
Article in English | MEDLINE | ID: mdl-29616106

ABSTRACT

Medulloblastoma is the most common type of solid brain tumor in children. This type of embryonic tumor is highly heterogeneous and has been classified into 4 molecular subgroups based on their gene expression profiles: WNT, SHH, Group 3 (G3) and Group 4 (G4). WNT and SHH tumors exhibit the specific dysregulation of genes and pathways, whereas G3 and G4 tumors, two of the more frequent subtypes, are the least characterized. Thus, novel markers to aid in the diagnosis, prognosis and management of medulloblastoma are required. In the present study, microarray gene expression data was downloaded from the Gene Expression Omnibus database, including data from the 4 subgroups of medulloblastoma and healthy cerebellum tissue (CT). The data was utilized in an in silico analysis to characterize each subgroup at a transcriptomic level. Using Partek Genomics Suite software, the data were visualized via hierarchical clustering and principal component analysis. The differentially expressed genes were uploaded to the MetaCore portal to perform enrichment analysis using CT gene expression as baseline, with fold change thresholds of <-5 and >5 for differential expression. The data mining analysis of microarray gene expression data enabled the identification of a range of dysregulated molecules associated with each subgroup of medulloblastoma. G4 is the most heterogeneous subgroup, as no definitive pathway defines its pathogenesis; analysis of the gene expression profiles were associated with the G4α and G4ß subcategories. TOX high mobility group box family member 3, synuclein α interacting protein and, potassium voltage-gated channel interacting protein 4 were identified as three novel potential markers for distinguishing the α and ß subcategories of G4. These genes may be associated with medulloblastoma pathogenesis, and thus may provide a basis for researching novel targeted treatment strategies for G4 medulloblastoma.

9.
Clin Ther ; 37(8): 1689-702, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26092088

ABSTRACT

PURPOSE: In response to the lack of pediatric formulations of metformin to control type 2 diabetes mellitus, hyperinsulinemic obesity, and dyslipidemias, we developed liquid formulations of metformin by dissolving 3 generic brands of 500-mg metformin(*,)(†,)(‡) tablets in water sweetened with sucralose. The physicochemical stabilities of these drugs were assessed and compared with those of formulations made with the innovative brand of metformin.(∥) A method to measure metformin plasma levels was proposed and then tested in 2 healthy subjects. This method may be useful to survey treatment compliance in the future. The biological safety profiles of the metformin solutions were assessed preliminarily in a system of hormone-dependent cancer cells (human breast cancer MCF-7 cells). METHODS: Metformin solutions stored at 25°C exposed to light and at 25°C, 4°C, and 40°C protected from light, underwent physicochemical analysis by ultra-performance liquid chromatography with ultraviolet detection, the mobile phase consisting of 0.2 M potassium monobasic phosphate (pH 6.5), 4.6 mM sodium dodecyl sulphate (SDS), and acetonitrile (63:7:30) at a flow rate of 0.8 mL/min in a Symmetry C8 150 × 4.6 mm column (Milford, Massachusetts) at 40°C (236 nm). MCF-7 cells were grown in 96-well ELISA plates (2 × 10(5) cells/well) and were exposed to 10, 20, and 40 mg/mL sucralose(§), Stevia rebaudiana (Svetia; Metco, S.A. de C.V., México, D.F., Mexico), and metformin (50 mg/mL) for 48 hours. Cytotoxicity was determined using the WST-1 colorimetric assay (Roche, USA) in an Epoch ELISA reader (BioTek, Winooski, Vermont) at 440 nm. FINDINGS: All brands of metformin were stable at all storage conditions for up to 30 days and retained >90% of the initial amount. Sucralose and Stevia rebaudiana caused zero cytotoxicity (ANOVA, P ≤ 0.05). The ultra-performance liquid chromatography with ultraviolet detection method was adapted to determine metformin level in very small blood samples (40 µL), which was linear within the range of 20 to 600 ng/mL metformin (retention time 2 minutes). Metformin was physically and chemically stable within the processed blood for up to 30 days at 4°C. IMPLICATIONS: Extemporaneous formulations of metformin may be developed at low cost from either the innovator or generic brands, and both sucralose and Stevia rebaudiana sweeteners may be well tolerated; however, the minimum amount of sweetener is recommended to avoid any endocrine disturbance. The analytical method is accurate and precise to clinically measure metformin levels in patients taking the extemporaneous formulation orally. Study registry identification number: 100/2013.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Metformin/administration & dosage , Administration, Oral , Adult , Cell Line, Tumor/drug effects , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Diabetes Mellitus, Type 2/blood , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , MCF-7 Cells/drug effects , Metformin/chemistry , Metformin/pharmacokinetics , Metformin/pharmacology , Pharmaceutical Solutions , Sucrose/analogs & derivatives
10.
Int J Clin Exp Pathol ; 7(5): 2256-64, 2014.
Article in English | MEDLINE | ID: mdl-24966934

ABSTRACT

Cervical cancer is the second malignancy in Mexico, little is known about the prognostic factors associated with this disease. Several cellular components are important in their transformation and progression. Alternative mRNA splice is an important mechanism for generating protein diversity, nevertheless, in cancer unknown mRNA diversity is expressed. Hyaluronan-mediated motility receptor (HMMR, RHAMM, CD168) is a family member of proteins, hyaluronan acid dependent, and has been associated with different malignant processes such as: angiogenesis, cell invasiveness, proliferation, metastasis and poor outcome in some tumors. In the present study we identified expression of HMMR in cervical cancer by means of RT-PCR and sequencing. Our results indicate co-expression of two HMMR variants in all samples, and one case expressed three alternative HMMR splice transcripts. These results showed the heterogeneity of mRNA transcripts of HMMR that could express in cancer and the expression of HMMR could be marker of malignancy in CC.


Subject(s)
Extracellular Matrix Proteins/genetics , Genetic Variation , Hyaluronan Receptors/genetics , RNA, Messenger/genetics , Uterine Cervical Neoplasms/genetics , Alternative Splicing , Base Sequence , Exons , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Hyaluronan Receptors/metabolism , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Transfection , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
11.
Environ Toxicol Pharmacol ; 33(2): 226-32, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22236719

ABSTRACT

Exposure to environmental tobacco smoke (ETS) during early childhood increases the risk of developing asthma. The intention of this study was to genotype a population of children from Coahuila state in Northern Mexico and to determine whether polymorphisms of the CYP1A1, GSTP1, and IL13 genes are associated with exposure to ETS and subsequently a higher risk for asthma. IL13 plays an important role in the development of allergic response, particularly those related with airway inflammation. CYP1A1 and GSTP1 are xenobiotic-metabolizing enzymes induced by repeated exposure to toxicants. Polymorphisms of these genes have been related with ETS exposure and increased risk for asthma. To assess the effect of IL13 (-1112 C>T and Arg110Gln), GSTP1 (Ile105Val), and CYP1A1 (Ile462Val) on asthma risk and ETS exposure, we recruited 201 unrelated children and classified them into four groups: (1) control without ETS exposure; (2) control with ETS exposure; (3) with asthma and with ETS exposure and (4) with asthma and without ETS exposure. No association among ETS exposure, asthma, and the studied polymorphisms was denoted by multivariate analysis of this population.


Subject(s)
Asthma/genetics , Cytochrome P-450 CYP1A1/genetics , Gene-Environment Interaction , Glutathione S-Transferase pi/genetics , Interleukin-13/genetics , Polymorphism, Genetic , Tobacco Smoke Pollution/adverse effects , Age Factors , Asthma/enzymology , Asthma/immunology , Case-Control Studies , Chi-Square Distribution , Child , Female , Genetic Predisposition to Disease , Humans , Logistic Models , Male , Mexico , Multivariate Analysis , Odds Ratio , Risk Assessment , Risk Factors
12.
Arch Toxicol ; 81(10): 697-709, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17431589

ABSTRACT

Histamine (HA) may bind to cytochrome P450 (CYP450) in rat liver microsomes. The CYP450-HA complex seems to regulate some cellular processes such as proliferation. In the present work, it is shown that HA increases the activity and protein level of CYP1A1 and CYP2E1, in vivo. CYP1A1 is associated with polycyclic aromatic hydrocarbon-mediated carcinogenesis and CYP2E1 with liver damage by oxidative stress. Studies of enzyme kinetics and binding with rat liver microsomes and supersomes were carried out to determine whether HA is a substrate of CYP1A1 and/or CYP2E1. The lack of NADPH oxidation in the presence of HA showed that it is not a substrate for CYP1A1. Activity measurements using the O-dealkylation of ethoxyresorufin indicated that HA is a mixed-type inhibitor of CYP1A1 in both microsomes and supersomes. On the other hand, HA induced a significant NADPH oxidation catalyzed by CYP2E1 supersomes, strongly suggesting that HA is a substrate for this isoform. Furthermore, HA is consumed in the presence of CYP2E1-induced microsomes and supersomes, as determined by o-phtalaldehyde complexes with HA by HPLC. The present findings may contribute to understand better the physiological function of CYP450 in relation with inflammation and other physiological processes in which HA may have a relevant role.


Subject(s)
Cytochrome P-450 CYP1A1/drug effects , Cytochrome P-450 CYP2E1/drug effects , Histamine/pharmacology , Animals , Carcinogens/pharmacology , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP2E1/metabolism , Dealkylation , Enzyme Induction/drug effects , Liver/metabolism , Male , Microsomes, Liver/metabolism , NADP/metabolism , Oxazines/metabolism , Oxidation-Reduction , Oxidative Stress , Protein Binding , Protein Isoforms/drug effects , Protein Isoforms/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...