Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Res ; 2(1): 24, 2012 Jun 09.
Article in English | MEDLINE | ID: mdl-22681935

ABSTRACT

BACKGROUND: Radiolabelled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumours, in which BN2/gastrin-releasing peptide receptors are overexpressed. We describe the influence of the specific activity of a 177Lu-DOTA-PEG5k-Lys-B analogue on its therapeutic efficacy and compare it with its non-PEGylated counterpart. METHODS: Derivatisation of a stabilised DOTA-BN(7-14)[Cha13,Nle14] analogue with a linear PEG molecule of 5 kDa (PEG5k) was performed by PEGylation of the ϵ-amino group of a ß3hLys-ßAla-ßAla spacer between the BN sequence and the DOTA chelator. The non-PEGylated and the PEGylated analogues were radiolabelled with 177Lu. In vitro evaluation was performed in human prostate carcinoma PC-3 cells, and in vivo studies were carried out in nude mice bearing PC-3 tumour xenografts. Different specific activities of the PEGylated BN analogue and various dose regimens were evaluated concerning their therapeutic efficacy. RESULTS: The specificity and the binding affinity of the BN analogue for BN2/GRP receptors were only slightly reduced by PEGylation. In vitro binding kinetics of the PEGylated analogue was slower since steady-state condition was reached after 4 h. PEGylation improved the stability of BN conjugate in vitro in human plasma by a factor of 5.6. The non-PEGylated BN analogue showed favourable pharmacokinetics already, i.e. fast blood clearance and renal excretion, but PEGylation improved the in vivo behaviour further. One hour after injection, the tumour uptake of the PEG5k-BN derivative was higher compared with that of the non-PEGylated analogue (3.43 ± 0.63% vs. 1.88 ± 0.4% ID/g). Moreover, the increased tumour retention resulted in a twofold higher tumour accumulation at 24 h p.i., and increased tumour-to-non-target ratios (tumour-to-kidney, 0.6 vs. 0.4; tumour-to-liver, 8.8 vs. 5.9, 24 h p.i.). In the therapy study, both 177Lu-labelled BN analogues significantly inhibited tumour growth. The therapeutic efficacy was highest for the PEGylated derivative of high specific activity administered in two fractions (2 × 20 MBq = 40 MBq) at day 0 and day 7 (73% tumour growth inhibition, 3 weeks after therapy). CONCLUSIONS: PEGylation and increasing the specific activity enhance the pharmacokinetic properties of a 177Lu-labelled BN-based radiopharmaceutical and provide a protocol for targeted radionuclide therapy with a beneficial anti-tumour effectiveness and a favourable risk-profile at the same time.

2.
Nucl Med Biol ; 38(7): 997-1009, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21982571

ABSTRACT

INTRODUCTION: Radiolabeled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumors in which BN(2)/gastrin-releasing peptide (GRP) receptors are overexpressed. However, the low in vivo stability of BN conjugates may limit their clinical application. In an attempt to improve their pharmacokinetics and counteract their rapid enzymatic degradation, we prepared a series of polyethylene glycol (PEG)-ylated BN(7-14) analogues for radiolabeling with (99m)Tc(CO)(3) and evaluated them in vitro and in vivo. METHODS: Derivatization of a stabilized (N(α)His)Ac-BN(7-14)[Cha(13),Nle(14)] analogue with linear PEG molecules of various sizes [5 kDa (PEG(5)), 10 kDa (PEG(10)) and 20 kDa (PEG(20))] was performed by PEGylation of the ɛ-amino group of a ß(3)hLys-ßAla-ßAla spacer between the stabilized BN sequence and the (N(α)His)Ac chelator. The analogues were then radiolabeled by employing the (99m)Tc-tricarbonyl technique. Binding affinity and internalization/externalization studies were performed in vitro in human prostate carcinoma PC-3 cells. Stability was investigated in vitro in human plasma and in vivo in Balb/c mice. Finally, single photon emission computed tomography (SPECT)/X-ray computed tomography studies were performed in nude mice bearing PC-3 tumor xenografts. RESULTS: PEGylation did not affect the binding affinity of BN analogues, as the binding affinity for BN(2)/GRP receptors remained high (K(d)<0.9 nM). However, in vitro binding kinetics of the PEGylated analogues were slower. Steady-state condition was reached after 4 h, and the total cell binding was 10 times lower than that for the non-PEGylated counterpart. Besides, PEGylation improved the stability of BN conjugates in vitro and in vivo. The BN derivative conjugated with a PEG(5) molecule showed the best pharmacokinetics in vivo, i.e., faster blood clearance and preferential renal excretion. The tumor uptake of the (99m)Tc-PEG(5)-Lys-BN conjugate was slightly higher compared to that of the non-PEGylated analogue (3.91%±0.44% vs. 2.80%±0.28% injected dose per gram 1 h postinjection, p.i.). Tumor retention was also increased, resulting in a threefold higher amount of radioactivity in the tumor at 24 h p.i. Furthermore, decreased hepatobiliary excretion and increased tumor-to-nontarget ratios (tumor-to-blood: 17.1 vs. 2.1; tumor-to-kidney: 1.1 vs. 0.4; tumor-to-liver: 5.8 vs. 1.0, 24 h p.i.) were observed and further confirmed via small-animal SPECT images 1 h p.i. CONCLUSION: PEGylation proved to be an effective strategy to enhance the tumor-targeting potential of (99m)Tc-labeled BN-based radiopharmaceuticals and probably other radiolabeled peptides.


Subject(s)
Bombesin/chemistry , Bombesin/pharmacokinetics , Organotechnetium Compounds/chemistry , Polyethylene Glycols/chemistry , Amino Acid Sequence , Animals , Bombesin/blood , Bombesin/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Lysine/chemistry , Male , Mice , Molecular Weight , Octanols/chemistry , Phosphates/chemistry , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Transport , Receptors, Bombesin/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...