Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Mol Cell ; 84(6): 1003-1020.e10, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38359824

ABSTRACT

The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.


Subject(s)
Centromere , Repetitive Sequences, Nucleic Acid , Humans , Centromere/genetics , Mitosis/genetics , Genomic Instability
2.
Nucleic Acids Res ; 51(14): 7269-7287, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37334829

ABSTRACT

Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.


Subject(s)
Microphthalmos , Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Neural Crest/metabolism , Microphthalmos/genetics , Euchromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , Muscle, Skeletal/metabolism , Phenotype , Chromatin/genetics
3.
Nucleus ; 14(1): 2160551, 2023 12.
Article in English | MEDLINE | ID: mdl-36602897

ABSTRACT

Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.


Subject(s)
Chromatin , Histones , Chromatin/genetics , Histones/metabolism , Lysine/metabolism , Enhancer Elements, Genetic/genetics , RNA
4.
Mol Cell ; 82(4): 816-832.e12, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35081363

ABSTRACT

Gene silencing by heterochromatin plays a crucial role in cell identity. Here, we characterize the localization, the biogenesis, and the function of an atypical heterochromatin, which is simultaneously enriched in the typical H3K9me3 mark and in H3K36me3, a histone mark usually associated with gene expression. We identified thousands of dual regions in mouse embryonic stem (ES) cells that rely on the histone methyltransferases SET domain bifurcated 1 (SETDB1) and nuclear set domain (NSD)-containing proteins to generate H3K9me3 and H3K36me3, respectively. Upon SETDB1 removal, dual domains lose both marks, gain signatures of active enhancers, and come into contact with upregulated genes, suggesting that it might be an important pathway by which genes are controlled by heterochromatin. In differentiated tissues, a subset of these dual domains is destabilized and becomes enriched in active enhancer marks, providing a mechanistic insight into the involvement of heterochromatin in the maintenance of cell identity.


Subject(s)
Chromatin Assembly and Disassembly , DNA Methylation , Enhancer Elements, Genetic , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/enzymology , Protein Processing, Post-Translational , Animals , Cell Line , Chromatin Immunoprecipitation Sequencing , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Methylation , Mice , RNA-Seq , Transcriptome
5.
Sci Adv ; 7(21)2021 05.
Article in English | MEDLINE | ID: mdl-34020942

ABSTRACT

MRN-MDC1 plays a central role in the DNA damage response (DDR) and repair. Using proteomics of isolated chromatin fragments, we identified DDR factors, such as MDC1, among those highly associating with a genomic locus upon transcriptional activation. Purification of MDC1 in the absence of exogenous DNA damage revealed interactions with factors involved in gene expression and RNA processing, in addition to DDR factors. ChIP-seq showed that MRN subunits, MRE11 and NBS1, colocalized throughout the genome, notably at TSSs and bodies of actively transcribing genes, which was dependent on the RNAPII transcriptional complex rather than transcription per se. Depletion of MRN increased RNAPII abundance at MRE11/NBS1-bound genes. Prolonged MRE11 or NBS1 depletion induced single-nucleotide polymorphisms across actively transcribing MRN target genes. These data suggest that association of MRN with the transcriptional machinery constitutively scans active genes for transcription-induced DNA damage to preserve the integrity of the coding genome.


Subject(s)
Cell Cycle Proteins , Chromatin , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Instability , Humans , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
6.
Nat Methods ; 17(4): 380-389, 2020 04.
Article in English | MEDLINE | ID: mdl-32152500

ABSTRACT

Understanding how chromatin is regulated is essential to fully grasp genome biology, and establishing the locus-specific protein composition is a major step toward this goal. Here we explain why the isolation and analysis of a specific chromatin segment are technically challenging, independently of the method. We then describe the published strategies and discuss their advantages and limitations. We conclude by discussing why significant technology developments are required to unambiguously describe the composition of small single loci.


Subject(s)
Chromatin , Chromosome Mapping , Chromosomes/genetics , Genetic Loci , Genome/physiology , Chromatin Immunoprecipitation , Humans
7.
J Mol Biol ; 432(15): 4244-4256, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32151584

ABSTRACT

Chromatin function in telomeres is poorly understood, but it is generally viewed as repressive. Yet, telomeric DNA sequences are transcribed into long non-coding RNAs named TElomere Repeat-containing RNA (TERRA). As TERRA molecules mostly localize at telomeres, major research efforts have been made to understand their functions, and how TERRA transcription is regulated and affects telomere structure. This review describes the current state of knowledge about the nature of chromatin at telomeres, its functions, and the relation between chromatin structure and TERRA.


Subject(s)
Chromatin/metabolism , RNA, Long Noncoding/genetics , Telomere/genetics , Chromatin/genetics , Gene Expression Regulation
8.
Nat Rev Mol Cell Biol ; 21(5): 300, 2020 05.
Article in English | MEDLINE | ID: mdl-32015547

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nucleic Acids Res ; 47(13): 6668-6684, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31114908

ABSTRACT

Rearrangement of the 1q12 pericentromeric heterochromatin and subsequent amplification of the 1q arm is commonly associated with cancer development and progression and may result from epigenetic deregulation. In many premalignant and malignant cells, loss of 1q12 satellite DNA methylation causes the deposition of polycomb factors and formation of large polycomb aggregates referred to as polycomb bodies. Here, we show that SSX proteins can destabilize 1q12 pericentromeric heterochromatin in melanoma cells when it is present in the context of polycomb bodies. We found that SSX proteins deplete polycomb bodies and promote the unfolding and derepression of 1q12 heterochromatin during replication. This further leads to segregation abnormalities during anaphase and generation of micronuclei. The structural rearrangement of 1q12 pericentromeric heterochromatin triggered by SSX2 is associated with loss of polycomb factors, but is not mediated by diminished polycomb repression. Instead, our studies suggest a direct effect of SSX proteins facilitated though a DNA/chromatin binding, zinc finger-like domain and a KRAB-like domain that may recruit chromatin modifiers or activate satellite transcription. Our results demonstrate a novel mechanism for generation of 1q12-associated genomic instability in cancer cells.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomes, Human, Pair 1/metabolism , Heterochromatin/metabolism , Neoplasm Proteins/physiology , Repressor Proteins/physiology , Alternative Splicing , Cell Line, Tumor , DNA, Neoplasm/genetics , DNA, Satellite/genetics , Epigenetic Repression , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genomic Instability , Humans , Melanoma/pathology , Neoplasm Proteins/genetics , Point Mutation , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/genetics , Protein Domains , Protein Folding , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Sequence Deletion , Transcription, Genetic , Zinc Fingers/physiology
11.
Sci Adv ; 5(5): eaav3673, 2019 05.
Article in English | MEDLINE | ID: mdl-31086817

ABSTRACT

Alternative lengthening of telomeres, or ALT, is a recombination-based process that maintains telomeres to render some cancer cells immortal. The prevailing view is that ALT is inhibited by heterochromatin because heterochromatin prevents recombination. To test this model, we used telomere-specific quantitative proteomics on cells with heterochromatin deficiencies. In contrast to expectations, we found that ALT does not result from a lack of heterochromatin; rather, ALT is a consequence of heterochromatin formation at telomeres, which is seeded by the histone methyltransferase SETDB1. Heterochromatin stimulates transcriptional elongation at telomeres together with the recruitment of recombination factors, while disrupting heterochromatin had the opposite effect. Consistently, loss of SETDB1, disrupts telomeric heterochromatin and abrogates ALT. Thus, inhibiting telomeric heterochromatin formation in ALT cells might offer a new therapeutic approach to cancer treatment.


Subject(s)
Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Telomere Shortening , Telomere/metabolism , Animals , Cell Line, Tumor , Histone Chaperones/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Humans , Methyltransferases/deficiency , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Repressor Proteins/deficiency , Repressor Proteins/genetics , Telomeric Repeat Binding Protein 2/metabolism , X-linked Nuclear Protein/metabolism
12.
Nucleic Acids Res ; 47(6): 2822-2839, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30698748

ABSTRACT

The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.


Subject(s)
Chromosomal Proteins, Non-Histone/physiology , DNA Methylation , Homeodomain Proteins/genetics , Microsatellite Repeats/genetics , Cells, Cultured , Cellular Reprogramming/genetics , Choanal Atresia/genetics , Choanal Atresia/metabolism , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation , HCT116 Cells , HEK293 Cells , Homeodomain Proteins/metabolism , Humans , Male , Microphthalmos/genetics , Microphthalmos/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Nose/abnormalities
13.
Cell Stem Cell ; 24(1): 123-137.e8, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30472157

ABSTRACT

The pluripotent ground state is defined as a basal state free of epigenetic restrictions, which influence lineage specification. While naive embryonic stem cells (ESCs) can be maintained in a hypomethylated state with open chromatin when grown using two small-molecule inhibitors (2i)/leukemia inhibitory factor (LIF), in contrast to serum/LIF-grown ESCs that resemble early post-implantation embryos, broader features of the ground-state pluripotent epigenome are not well understood. We identified epigenetic features of mouse ESCs cultured using 2i/LIF or serum/LIF by proteomic profiling of chromatin-associated complexes and histone modifications. Polycomb-repressive complex 2 (PRC2) and its product H3K27me3 are highly abundant in 2i/LIF ESCs, and H3K27me3 is distributed genome-wide in a CpG-dependent fashion. Consistently, PRC2-deficient ESCs showed increased DNA methylation at sites normally occupied by H3K27me3 and increased H4 acetylation. Inhibiting DNA methylation in PRC2-deficient ESCs did not affect their viability or transcriptome. Our findings suggest a unique H3K27me3 configuration protects naive ESCs from lineage priming, and they reveal widespread epigenetic crosstalk in ground-state pluripotency.


Subject(s)
Chromatin/metabolism , DNA Methylation , Epigenesis, Genetic , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Polycomb Repressive Complex 2/metabolism , Proteome/analysis , Animals , Cell Differentiation , Chromatin/genetics , Histones/genetics , Histones/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Polycomb Repressive Complex 2/genetics , Protein Processing, Post-Translational
14.
Chromosoma ; 127(1): 3-18, 2018 03.
Article in English | MEDLINE | ID: mdl-29250704

ABSTRACT

Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.


Subject(s)
Chromatin/genetics , Telomere Homeostasis , Telomere/genetics , Animals , Embryonic Development/genetics , Humans
15.
EMBO J ; 36(18): 2726-2741, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28778956

ABSTRACT

Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.


Subject(s)
DNA Replication , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Humans , Methylation
16.
Methods Mol Biol ; 1550: 19-33, 2017.
Article in English | MEDLINE | ID: mdl-28188520

ABSTRACT

The biological functions of given genomic regions are ruled by the local chromatin composition. The Proteomics of Isolated Chromatin segments approach (PICh) is a powerful and unbiased method to analyze the composition of chosen chromatin segments, provided they are abundant (repeated) or that the organism studied has a small genome. PICh can be used to identify novel and unexpected regulatory factors, or when combined with quantitative mass spectrometric approaches, to characterize the function of a defined factor at the chosen locus, by quantifying composition changes at the locus upon removal/addition of that factor.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Proteins/chemistry , Proteins/isolation & purification , Proteome , Proteomics/methods , Cell Culture Techniques , Cells, Cultured , Chromatin/isolation & purification , Chromatin Immunoprecipitation/methods , Heterochromatin/genetics , Heterochromatin/metabolism , Humans , Mass Spectrometry , Nucleic Acid Hybridization/methods , Repetitive Sequences, Nucleic Acid , Telomere , Workflow
17.
Chromosome Res ; 25(1): 77-87, 2017 03.
Article in English | MEDLINE | ID: mdl-28078514

ABSTRACT

Constitutive heterochromatin is composed mainly of repetitive elements and represents the typical inert chromatin structure in eukaryotic cells. Approximately half of the mammalian genome is made of repeat sequences, such as satellite DNA, telomeric DNA, and transposable elements. As essential genes are not present in these regions, most of these repeat sequences were considered as junk DNA in the past. However, it is now clear that these regions are essential for chromosome stability and the silencing of neighboring genes. Genetic and biochemical studies have revealed that histone methylation at H3K9 and its recognition by heterochromatin protein 1 represent the fundamental mechanism by which heterochromatin forms. Although this molecular mechanism is highly conserved from yeast to human cells, its detailed epigenetic regulation is more complex and dynamic for each distinct constitutive heterochromatin structure in higher eukaryotes. It can also vary according to the developmental stage. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis is a powerful tool to investigate the epigenetic regulation of eukaryote genomes, but non-unique reads are usually discarded during standard ChIP-seq data alignment to reference genome databases. Therefore, specific methods to obtain global epigenetic information concerning repetitive elements are needed. In this review, we focus on such approaches and we summarize the latest molecular models for distinct constitutive heterochromatin types in mammals.


Subject(s)
DNA , Heterochromatin , Repetitive Sequences, Nucleic Acid , Animals , Epigenesis, Genetic , Humans , Models, Molecular
18.
Elife ; 5: e13722, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26949251

ABSTRACT

Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression.


Subject(s)
Cell Proliferation , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Ki-67 Antigen/metabolism , Animals , Gene Expression , Gene Knockdown Techniques , Humans , Mice , Xenopus
19.
Trends Genet ; 31(11): 661-672, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26431676

ABSTRACT

Pericentromeric DNA represents a large fraction of the mammalian genome that is usually assembled into heterochromatin. Recent advances have revealed that the composition of pericentromeric heterochromatin is surprisingly dynamic. Indeed, high levels of histone H3 trimethylation on lysine 9 (H3K9me3) and DNA methylation normally characterize the repressive environment of this region. However, in specific tissues and in cancer cells, Polycomb proteins can occupy pericentromeric heterochromatin and act as a molecular sink for transcriptional regulators. Restoring heterochromatin methylation marks could, thus, be an important way to bring back normal gene expression programs in disease. Here, I discuss the potential mechanisms by which Polycomb complexes are recruited to pericentromeric DNA.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , Heterochromatin/metabolism , Histones/metabolism , Paired Box Transcription Factors/metabolism , Polycomb-Group Proteins/metabolism , Animals , Centromere/metabolism , Centromere/ultrastructure , DNA/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Heterochromatin/ultrastructure , Histones/genetics , Humans , Mice , Paired Box Transcription Factors/genetics , Polycomb-Group Proteins/genetics , Signal Transduction
20.
Nat Commun ; 6: 6674, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25812914

ABSTRACT

The unbiased identification of proteins associated with specific loci is crucial for understanding chromatin-based processes. The proteomics of isolated chromatin fragment (PICh) method has previously been developed to purify telomeres and identify associated proteins. This approach is based on the affinity capture of endogenous chromatin segments by hybridization with oligonucleotide containing locked nucleic acids. However, PICh is only efficient with highly abundant genomic targets, limiting its applicability. Here we develop an approach for identifying factors bound to the promoter region of the ribosomal RNA genes that we call end-targeting PICh (ePICh). Using ePICh, we could specifically enrich the RNA polymerase I pre-initiation complex, including the selectivity factor 1. The high purity of the ePICh material allowed the identification of ZFP106, a novel factor regulating transcription initiation by targeting RNA polymerase I to the promoter. Our results demonstrate that ePICh can uncover novel proteins controlling endogenous regulatory elements in mammals.


Subject(s)
Chromatin/genetics , Genes, rRNA/genetics , Promoter Regions, Genetic/genetics , Proteomics , RNA Polymerase I/genetics , Transcription Initiation, Genetic , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Chromatin Immunoprecipitation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...