Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Imaging Med Surg ; 13(7): 4603-4617, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37456280

ABSTRACT

Background: An aberration correction algorithm has been implemented and demonstrated in an echocardiographic clinical trial using two-dimensional (2D) imaging. The method estimates and compensates arrival time errors between different sub-aperture processor (SAP) signals in a matrix array probe. Methods: Five standard views of channel data cineloops were recorded from 22 patients (11 male and 11 female) resulting in a total of 116 cineloops. The channel data were processed with and without the aberration correction algorithm, allowing for side-by-side comparison of images processed from the same channel data cineloops. Results: The aberration correction algorithm improved image quality, as quantified by a coherence metric, in all 7,380 processed frames. In a blinded and left-right-randomized side-by-side evaluation, four cardiologists (two experienced and two in training) preferred the aberration corrected cineloops in 97% of the cases. The clinicians reported that the corrected cineloops appeared sharper with better contrast and less noise. Many structures like valve leaflets, chordae, endocardium, and endocardial borders appeared narrower and more clearly defined in the aberration corrected images. An important finding is that aberration correction improves contrast between the endocardium and ventricle cavities for every processed image. The gain difference was confirmed by the cardiologists in their feedback and quantified with a median global gain difference estimate between the aberration-corrected and non-corrected images of 1.2 dB. Conclusions: The study shows the potential value of aberration correction in clinical echocardiography. Systematic improvement of images acquired with state-of-art equipment was observed both with quantitative metrics of image quality and clinician preference.

2.
Article in English | MEDLINE | ID: mdl-26559630

ABSTRACT

This article describes the relation between apodization in conventional focused imaging and apodization in coherent plane-wave compounding (CPWC). We pose the hypothesis that equivalent transmit beams can be produced with both methods if the transmit apodization is adequately transformed. We derive a relation between apodization in CPWC and in synthetic transmit aperture imaging (STAI), which we argue to be equivalent to conventional optimal multifocus imaging. We find that under certain conditions, the transformation of the apodization becomes trivial and the same window used in STAI can be applied for CPWC but extended to the whole angle sequence. We test the hypothesis with in silico data and find that the transformed apodization accurately mimics the objective transmit apodization, with differences in the lateral resolution between 3% and 6%.


Subject(s)
Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Computer Simulation
3.
Article in English | MEDLINE | ID: mdl-24297034

ABSTRACT

The emergence of three-dimensional imaging in the field of medical ultrasound imaging has greatly increased the number of transmissions needed to insonify a whole volume. With a large number of transmissions comes a low image frame rate. When using classical transmission techniques, as in two-dimensional imaging, the frame rate becomes unacceptably low, prompting the use of alternative transmission patterns that require less time. One alternative is to use a multi-line transmission (MLT) technique which consists of transmitting several pulses simultaneously in different directions. Perturbations appear when acquiring and beamforming the signal in the direction of one pulse because of the pulses sent in other directions. The edge waves from the pulses transmitted in a different direction add to the signal transmitted in the direction of interest, resulting in artifacts in the final image. Taking advantage of the nonlinear propagation of sound in tissue, the second-harmonic signal can be used with the MLT technique. The image obtained using the second-harmonic signal, compared with an image obtained using the fundamental signal, should have reduced artifacts coming from other pulses transmitted simultaneously. Simulations, backed up by experiments imaging a wire target and an in vivo left ventricle, confirm that the hypothesis is valid. In the studied case, the perturbations appear as an increase in the signal level around the main echo of a point scatterer. When using the fundamental signal, the measured amplitude level of the perturbations was approximately -40 dB compared with the maximum signal amplitude (-27 dB in vivo), whereas it was around -60 dB (-45 dB in vivo) for the second-harmonic signal. The MLT technique encounters limitations in the very near field where the pulses overlap and the perturbation level also increases for images with strong speckle and low contrast.


Subject(s)
Imaging, Three-Dimensional/methods , Ultrasonography/methods , Computer Simulation , Heart Ventricles/diagnostic imaging , Humans , Signal Processing, Computer-Assisted
4.
IEEE Trans Med Imaging ; 32(7): 1265-76, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23549887

ABSTRACT

Coherent plane wave compounding is a promising technique for achieving very high frame rate imaging without compromising image quality or penetration. However, this approach relies on the hypothesis that the imaged object is not moving during the compounded scan sequence, which is not the case in cardiovascular imaging. This work investigates the effect of tissue motion on retrospective transmit focusing in coherent compounded plane wave imaging (PWI). Two compound scan sequences were studied based on a linear and alternating sequence of tilted plane waves, with different timing characteristics. Simulation studies revealed potentially severe degradations in the retrospective focusing process, where both radial and lateral resolution was reduced, lateral shifts of the imaged medium were introduced, and losses in signal-to-noise ratio (SNR) were inferred. For myocardial imaging, physiological tissue displacements were on the order of half a wavelength, leading to SNR losses up to 35 dB, and reductions of contrast by 40 dB. No significant difference was observed between the different tilt sequences. A motion compensation technique based on cross-correlation was introduced, which significantly recovered the losses in SNR and contrast for physiological tissue velocities. Worst case losses in SNR and contrast were recovered by 35 dB and 27-35 dB, respectively. The effects of motion were demonstrated in vivo when imaging a rat heart. Using PWI, very high frame rates up to 463 fps were achieved at high image quality, but a motion correction scheme was then required.


Subject(s)
Echocardiography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Animals , Computer Simulation , Movement/physiology , Phantoms, Imaging , Rats , Signal-To-Noise Ratio
5.
Article in English | MEDLINE | ID: mdl-25004541

ABSTRACT

Multi-line transmission (MLT) is a technique in which ultrasound pulses for several directions are transmitted simultaneously. The purpose is increased frame rate, which is especially important in 3-D echocardiography. Compared with techniques purely based on parallel beamformation, MLT avoids the need for reducing the transmit aperture and thus maintains a high harmonic signal level. The main disadvantage is that artifacts are caused by cross-talk between the simultaneous beams. In a conventional MLT implementation, simultaneous transmits would be spaced regularly in the azimuth and elevation planes. However, using rectangular geometry arrays, most of the acoustic side-lobe energy is concentrated along these planes. The results in this work show that the crosstalks can be pushed below the typical display range of 50 dB used in cardiac applications if the parallel transmit directions are aligned along the transverse diagonal of the array. Dispositions with 2 to 5 MLT for a typical cardiac 2-D phased-array were investigated using simulation software. Using the proposed alignment, the maximal crosstalk artifact amplitudes decreased 20 to 30 dB compared with conventional MLT dispositions. In water-tank measurements, side-lobe levels of a commercially available rectangular probe were 15 to 25 dB lower along the transverse diagonal, confirming that similar suppressions can be expected using actual transducers.

SELECTION OF CITATIONS
SEARCH DETAIL
...