Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676028

ABSTRACT

Diabetes mellitus (DM) is a persistent metabolic disorder associated with the hormone insulin. The two main types of DM are type 1 (T1DM) and type 2 (T2DM). Physical activity plays a crucial role in the therapy of diabetes, benefiting both types of patients. The detection, recognition, and subsequent classification of physical activity based on type and intensity are integral components of DM treatment. The continuous glucose monitoring system (CGMS) signal provides the blood glucose (BG) level, and the combination of CGMS and heart rate (HR) signals are potential targets for detecting relevant physical activity from the BG variation point of view. The main objective of the present research is the developing of an artificial intelligence (AI) algorithm capable of detecting physical activity using these signals. Using multiple recurrent models, the best-achieved performance of the different classifiers is a 0.99 area under the receiver operating characteristic curve. The application of recurrent neural networks (RNNs) is shown to be a powerful and efficient solution for accurate detection and analysis of physical activity in patients with DM. This approach has great potential to improve our understanding of individual activity patterns, thus contributing to a more personalized and effective management of DM.


Subject(s)
Algorithms , Blood Glucose , Exercise , Heart Rate , Neural Networks, Computer , Humans , Exercise/physiology , Heart Rate/physiology , Blood Glucose/analysis , Blood Glucose Self-Monitoring/methods , Male , Diabetes Mellitus/diagnosis , Female , Adult , ROC Curve , Diabetes Mellitus, Type 2/diagnosis , Artificial Intelligence , Diabetes Mellitus, Type 1/physiopathology , Middle Aged
2.
Sensors (Basel) ; 22(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36366265

ABSTRACT

Non-coordinated physical activity may lead to hypoglycemia, which is a dangerous condition for diabetic people. Decision support systems related to type 1 diabetes mellitus (T1DM) still lack the capability of automated therapy modification by recognizing and categorizing the physical activity. Further, this desired adaptive therapy should be achieved without increasing the administrative load, which is already high for the diabetic community. These requirements can be satisfied by using artificial intelligence-based solutions, signals collected by wearable devices, and relying on the already available data sources, such as continuous glucose monitoring systems. In this work, we focus on the detection of physical activity by using a continuous glucose monitoring system and a wearable sensor providing the heart rate-the latter is accessible even in the cheapest wearables. Our results show that the detection of physical activity is possible based on these data sources, even if only low-complexity artificial intelligence models are deployed. In general, our models achieved approximately 90% accuracy in the detection of physical activity.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Humans , Blood Glucose Self-Monitoring/methods , Heart Rate , Artificial Intelligence , Machine Learning , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL
...