Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Res Public Health ; 12(5): 5614-33, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26006131

ABSTRACT

The aim of this study was to estimate both the contribution of drinking water and food (raw and cooked) to the total (t-As) and inorganic (i-As) arsenic intake and the exposure of inhabitants of Socaire, a rural village in Chile´s Antofagasta Region, by using urine as biomarker. The i-As intake from food and water was estimated using samples collected between November 2008 and September 2009. A 24-hour dietary recall questionnaire was given to 20 participants. Drinking water, food (raw and cooked) and urine samples were collected directly from the homes where the interviewees lived. The percentage of i-As/t-As in the drinking water that contributed to the total intake was variable (26.8-92.9). Cereals and vegetables are the food groups that contain higher concentrations of i-As. All of the participants interviewed exceeded the reference intake FAO/OMS (149.8 µg∙i-As·day⁻¹) by approximately nine times. The concentration of t-As in urine in each individual ranged from 78 to 459 ng·mL⁻¹. Estimated As intake from drinking water and food was not associated with total urinary As concentration. The results show that both drinking water and food substantially contribute to i-As intake and an increased exposure risk to adult residents in contaminated areas.


Subject(s)
Arsenic/urine , Drinking Water/analysis , Environmental Exposure/analysis , Food Analysis , Adult , Aged , Biomarkers , Chile , Cooking , Edible Grain/chemistry , Environmental Monitoring , Female , Humans , Male , Mental Recall , Middle Aged , Regression Analysis , Rural Population , Surveys and Questionnaires , Vegetables/chemistry , Water Pollutants, Chemical/analysis , Water Supply
2.
J Agric Food Chem ; 52(6): 1773-9, 2004 Mar 24.
Article in English | MEDLINE | ID: mdl-15030245

ABSTRACT

Total and inorganic As contents of cooked vegetables obtained from an arsenic endemic area of Chile were analyzed. Inorganic As intake from those foods, bread, and water was estimated. The study was performed in two different periods, in which the water used by the population for drinking and cooking purposes contained 0.572 (first period) or 0.041 microg mL(-)(1) (second period). In the first period, the FAO/WHO reference intake was exceeded by all of the persons interviewed. In the second period, the reference intake was exceeded by all of the persons interviewed ages 13-15. The foods studied contributed 4% (first period) or 25% (second period) of the inorganic As intake. The results show the contribution of food to inorganic As intake and the risk to which those ages 15 or younger are exposed.


Subject(s)
Arsenic/administration & dosage , Bread/analysis , Diet , Rural Population , Vegetables/chemistry , Water/analysis , Arsenic/analysis , Chile , Hot Temperature , Humans
3.
J Agric Food Chem ; 50(3): 642-7, 2002 Jan 30.
Article in English | MEDLINE | ID: mdl-11804542

ABSTRACT

High levels of arsenic are found in the soil and water of the Second Region in Chile as a result of natural causes. Total and inorganic arsenic contents were analyzed in the edible part of 16 agricultural products (roots, stems, leaves, inflorescences, and fruits) grown in this area. The total arsenic contents varied in the range 0.008-0.604 microg g(-1) of wet weight (ww), below the maximum level allowed by Chilean legislation (1 microg(-1) of ww). Inorganic arsenic contents (range = 0.008-0.613 microg(-1) of ww) represented between 28 and 114% of total arsenic. The concentrations of total and inorganic arsenic found in edible roots and leaves were higher than those found in fruit. The highest concentrations were found in a sample of spinach. High quantities of this vegetable would have to be consumed (250 g/day) to reach the Provisional Tolerable Weekly Intake for inorganic arsenic. The vegetable group may make a considerable contribution to the total intake of inorganic arsenic.


Subject(s)
Arsenic/analysis , Vegetables/chemistry , Arsenic/administration & dosage , Chile , Food Contamination/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...