Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Genet Biol ; 162: 103729, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35944835

ABSTRACT

γ-Tubulin ring complexes (γ-TuRC) mediate nucleation and anchorage of microtubules (MTs) to microtubule organizing centers (MTOCs). In fungi, the spindle pole body (SPB) is the functional equivalent of the centrosome, which is the main MTOC. In addition, non-centrosomal MTOCs (ncMTOCs) contribute to MT formation in some fungi like Schizosaccharomyces pombe and Aspergillus nidulans. In A. nidulans, MTOCs are anchored at septa (sMTOC) and share components of the outer plaque of the SPB. Here we show that the Neurospora crassa SPB is embedded in the nuclear envelope, with the γ-TuRC targeting proteins PCP-1Pcp1/PcpA located at the inner plaque and APS-2Mto1/ApsB located at the outer plaque of the SPB. PCP-1 was a specific component of nuclear MTOCs, while APS-2 was also present at the septal pore. Although γ-tubulin was only detected at the nucleus, spontaneous MT nucleation occurred in the apical and subapical cytoplasm during recovery from benomyl-induced MT depolymerization experiments. There was no evidence for MT nucleation at septa. However, without benomyl treatment MT plus-ends were organized in the septal pore through MTB-3EB1. Those septal MT plus ends polymerized MTs from septa in interphase cells Thus we conclude that the SPB is the only MT nucleation site in N. crassa, but the septal pore aids the MT network arrangement through the anchorage of the MT plus-ends through a pseudo-MTOC.


Subject(s)
Carrier Proteins , Fungal Proteins , Microtubule-Associated Proteins , Neurospora crassa , Benomyl/metabolism , Carrier Proteins/metabolism , Fungal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Spindle Pole Bodies/metabolism , Tubulin/genetics
2.
Sci Rep ; 10(1): 14108, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839485

ABSTRACT

Selection pressures exerted on Staphylococcus aureus by host factors during infection may lead to the emergence of regulatory phenotypes better adapted to the infection site. Traits convenient for persistence may be fixed by mutation thus turning these mutants into microevolution endpoints. The feasibility that stable, non-encapsulated S. aureus mutants can regain expression of key virulence factors for survival in the bloodstream was investigated. S. aureus agr mutant HU-14 (IS256 insertion in agrC) from a patient with chronic osteomyelitis was passed through the bloodstream using a bacteriemia mouse model and derivative P3.1 was obtained. Although IS256 remained inserted in agrC, P3.1 regained production of capsular polysaccharide type 5 (CP5) and staphyloxanthin. Furthermore, P3.1 expressed higher levels of asp23/SigB when compared with parental strain HU-14. Strain P3.1 displayed decreased osteoclastogenesis capacity, thus indicating decreased adaptability to bone compared with strain HU-14 and exhibited a trend to be more virulent than parental strain HU-14. Strain P3.1 exhibited the loss of one IS256 copy, which was originally located in the HU-14 noncoding region between dnaG (DNA primase) and rpoD (sigA). This loss may be associated with the observed phenotype change but the mechanism remains unknown. In conclusion, S. aureus organisms that escape the infected bone may recover the expression of key virulence factors through a rapid microevolution pathway involving SigB regulation of key virulence factors.


Subject(s)
Bacterial Capsules/metabolism , Bacterial Proteins/genetics , Staphylococcus aureus/genetics , Trans-Activators/genetics , Xanthophylls/metabolism , Adult , Animals , Anti-Bacterial Agents/pharmacology , Bacteremia/microbiology , Bacterial Capsules/genetics , Disease Models, Animal , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Regulation, Bacterial/genetics , Humans , Male , Mice , Osteomyelitis/microbiology , Sequence Deletion/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Virulence/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...