Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 85(3): 1873-9, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23252800

ABSTRACT

A procedure for the universal detection and quantification of polar organic compounds separated by liquid chromatography (LC) based on postcolumn carbon isotope dilution mass spectrometry (IDMS) was developed. The eluent from the LC column is mixed online with a continuous flow of (13)C-enriched sodium bicarbonate, and the sodium persulfate oxidation reaction in acidic media is employed to achieve isotope equilibration. All carbon-containing compounds eluting from the column are oxidized to (12)CO(2) and (13)CO(2), respectively, and the carbon dioxide is separated from the aqueous phase using a gas-permeable membrane. The gaseous carbon dioxide is then carried to the mass spectrometer for isotope ratio measurements. Different water-soluble organic compounds were evaluated using a flow injection configuration to assess the efficiency of the oxidation process. Most water-soluble organic compounds tested showed quantitative oxidation. However, chemical structures involving conjugated C═N double bounds and guanidinium-like structures were found to be resistant to the oxidation and were further studied. For this purpose, (13)C(1)-labeled creatine (with the isotopic label in the guanidinium group) was employed as model compound. Specific conditions for the quantitative oxidation of these compounds required lower flow rates and the addition of metallic catalysts. This novel approach was tested as a universal detection and quantification system for LC. A simple standard mixture of four amino acids was separated under 100% aqueous conditions and quantified without the need for specific standards with good accuracy and precision using potassium hydrogen phthalate as internal standard. The main field of application of the developed method is for the purity assessment of organic standards with direct traceability to the International System of Units (SI).


Subject(s)
Isotope Labeling/methods , Mass Spectrometry/methods , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Chromatography, Liquid/methods , Oxidation-Reduction
2.
Anal Bioanal Chem ; 402(1): 91-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22009048

ABSTRACT

Isotope dilution mass spectrometry (IDMS) can be considered a primary measurement method directly traceable to the International System of Units (SI). This measurement technique is increasingly employed in routine laboratories, owing to its unequalled analytical performance, precision and ease of accreditation. Unfortunately, for the adequate application of IDMS, several isotopically labelled standards, corresponding to the compounds of interest, are required. Additionally, when the enriched isotope is continuously added after a chromatographic separation, and an elemental ion source is used, it allows quantification of the different analytes being eluted from the column without requiring specific standards for each compound (online IDMS). In this article, we discuss how the traditional applicability of online IDMS for elemental speciation can be dramatically expanded by using carbon isotope tracers, oxidation or combustion reactions and a conventional molecular ion source. With such a strategy every carbon-containing compound being eluted from a chromatography system can be quantified without the need for specific standards as long as quantitative combustion/oxidation and complete elution occur. So far, only gas chromatography-combustion-mass spectrometry applications have been described, but recent results indicate the great possibilities of extending this novel approach to the quantification of organic compounds after separation by liquid chromatography.

SELECTION OF CITATIONS
SEARCH DETAIL
...