Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(1): e0244724, 2021.
Article in English | MEDLINE | ID: mdl-33406150

ABSTRACT

The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term "local microbiota" as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family.


Subject(s)
Cecum/microbiology , Chickens/microbiology , Gastrointestinal Microbiome/genetics , Animal Feed , Animals , Australia , Croatia , DNA Barcoding, Taxonomic , Germany , Hungary , Malaysia , RNA, Ribosomal, 16S/genetics , Slovenia , United States
2.
Biomed Res Int ; 2018: 1879168, 2018.
Article in English | MEDLINE | ID: mdl-29682522

ABSTRACT

Antibiotic growth promoters have been used for decades in poultry farming as a tool to maintain bird health and improve growth performance. Global concern about the recurrent emergence and spreading of antimicrobial resistance is challenging the livestock producers to search for alternatives to feed added antibiotics. The use of phytogenic compounds appears as a feasible option due to their ability to emulate the bioactive properties of antibiotics. However, detailed description about the effects of in-feed antibiotics and alternative natural products on chicken intestinal microbiota is lacking. High-throughput sequencing of 16S rRNA gene was used to study composition of cecal microbiota in broiler chickens supplemented with either bacitracin or a blend of chestnut and quebracho tannins over a 30-day grow-out period. Both tannins and bacitracin had a significant impact on diversity of cecal microbiota. Bacitracin consistently decreased Bifidobacterium while other bacterial groups were affected only at certain times. Tannins-fed chickens showed a drastic decrease in genus Bacteroides while certain members of order Clostridiales mainly belonging to the families Ruminococcaceae and Lachnospiraceae were increased. Different members of these groups have been associated with an improvement of intestinal health and feed efficiency in poultry, suggesting that these bacteria could be associated with productive performance of birds.


Subject(s)
Bacitracin/pharmacology , Chickens/microbiology , Gastrointestinal Microbiome/drug effects , Microbiota/drug effects , Tannins/pharmacology , Animal Feed , Animals , Anti-Bacterial Agents/pharmacology , Bacteroides/drug effects , Bacteroides/genetics , Bifidobacterium/drug effects , Bifidobacterium/genetics , Clostridiales/drug effects , Clostridiales/genetics , Intestines/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
4.
Biomed Res Int ; 2017: 9610810, 2017.
Article in English | MEDLINE | ID: mdl-29445749

ABSTRACT

The use of phytogenic dietary additives is being evaluated as a means to improve animal productivity. The effect of tannins seems to be the influence not only directly on the digestive process through binding of dietary proteins but also indirectly over their effects on gastrointestinal microbiota. High-throughput sequencing of 16S rRNA gene was used to analyze the impact of dietary supplementation with a blend of chestnut and quebracho tannins on the rumen microbiota of Holstein steers. Bacterial richness was lower in tannins treated animals, while the overall population structure of rumen microbiota was not significantly disturbed by tannins. The ratio of the phyla Firmicutes and Bacteroidetes, a parameter associated with energy harvesting function, was increased in tannins supplemented animals, essentially due to the selective growth of Ruminococcaceae over members of genus Prevotella. Fibrolytic, amylolytic, and ureolytic bacterial communities in the rumen were altered by tannins, while methanogenic archaea were reduced. Furthermore, ruminal pH was significantly higher in animals supplemented with tannins than in the control group, while urease activity exhibited the opposite pattern. Further work is necessary to assess the relation between tannins impact on rumen microbiota and alteration of rumen fermentation parameters associated with bovine performance.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome/drug effects , Rumen/microbiology , Tannins/administration & dosage , Aesculus/chemistry , Animal Feed , Animals , Archaea/drug effects , Archaea/genetics , Bacteroidetes/drug effects , Bacteroidetes/genetics , Cattle , Digestion , Fermentation , Firmicutes/drug effects , Firmicutes/genetics , Prevotella , RNA, Ribosomal, 16S/genetics , Rumen/drug effects
5.
Virology ; 447(1-2): 187-96, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24210114

ABSTRACT

Classic phylogenetic and modern population-based clustering methods were used to analyze hepatitis C virus (HCV) evolution in plasma and to assess viral compartmentalization within peripheral blood mononuclear cells (PBMCs) in 6 children during 3.2-9.6yr of follow-up. Population structure analysis of cloned amplicons encompassing hypervariable region 1 led to the distinction of two evolutionary patterns, one highly divergent and another one genetically homogeneous. Viral adaptability was reflected by co-evolution of viral communities switching rapidly from one to another in the context of divergence and stability associated with highly homogeneous communities which were replaced by new ones after long periods. Additionally, viral compartmentalization of HCV in PBMCs was statistically demonstrated, suggesting their role as a pool of genetic variability. Our results support the idea of a community-based structure of HCV viral populations during chronic infection and highlight a role of the PBMC compartment in the persistence of such structure.


Subject(s)
Genetic Variation , Hepacivirus/classification , Hepacivirus/genetics , Hepatitis C, Chronic/virology , Adolescent , Biota , Child , Child, Preschool , Cluster Analysis , Female , Hepacivirus/isolation & purification , Humans , Leukocytes, Mononuclear/virology , Male , Molecular Sequence Data , Phylogeny , Plasma/virology , RNA, Viral/genetics , Retrospective Studies , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...