Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1745-56, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26249355

ABSTRACT

Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.


Subject(s)
Carbon Dioxide/metabolism , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Gammaproteobacteria/chemistry , Gammaproteobacteria/enzymology , Biocatalysis , Carbonic Anhydrases/genetics , Catalytic Domain , Crystallography, X-Ray , Enzyme Stability , Gammaproteobacteria/genetics , Humans , Models, Molecular , Protein Conformation , Protein Engineering , Protein Multimerization , Temperature
2.
Bioorg Med Chem Lett ; 25(21): 4937-4940, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25998503

ABSTRACT

Thiomicrospira crunogena XCL-2 expresses an α-carbonic anhydrase (TcruCA). Sequence alignments reveal that TcruCA displays a high sequence identity (>30%) relative to other α-CAs. This includes three conserved histidines that coordinate the active site zinc, a histidine proton shuttling residue, and opposing hydrophilic and hydrophobic sides that line the active site. The catalytic efficiency of TcruCA is considered moderate relative to other α-CAs (k(cat)/K(M)=1.1×10(7) M(-1) s(-1)), being a factor of ten less efficient than the most active α-CAs. TcruCA is also inhibited by anions with Cl(-), Br(-), and I(-), all showing Ki values in the millimolar range (53-361 mM). Hydrogen sulfide (HS(-)) revealed the highest affinity for TcruCA with a Ki of 1.1 µM. It is predicted that inhibition of TcruCA by HS(-) (an anion commonly found in the environment where Thiomicrospira crunogena is located) is a way for Thiomicrospira crunogena to regulate its carbon-concentrating mechanism (CCM) and thus the organism's metabolic functions. Results from this study provide preliminary insights into the role of TcruCA in the general metabolism of Thiomicrospira crunogena.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Gammaproteobacteria/enzymology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship
3.
Article in English | MEDLINE | ID: mdl-22949195

ABSTRACT

Thiomicrospira crunogena XCL-2 is a novel sulfur-oxidizing chemolithoautotroph that plays a significant role in the sustainability of deep-sea hydrothermal vent communities. This recently discovered gammaproteobacterium encodes and expresses four carbonic anhydrases (CAs) from three evolutionarily and structurally distinct CA families: an α-CA, two ß-CAs and a γ-CA. In order to characterize and elucidate the physiological roles of these CAs, X-ray crystallographic structural studies have been initiated on the α-CA. The α-CA crystallized in space group C2. The crystals diffracted to a maximum resolution of 2.6 Å, with unit-cell parameters a = 127.1, b = 102.2, c = 105.0 Å, ß = 127.3°, and a calculated Matthews coefficient of 2.04 Å(3) Da(-1) with four identical protein molecules in the crystallographic asymmetric unit. A preliminary solution was determined by molecular replacement with the PHENIX AutoMR wizard, which had an initial TFZ score of 17.9. Refinement of the structure is currently in progress.


Subject(s)
Carbonic Anhydrases/chemistry , Piscirickettsiaceae/enzymology , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...