Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 159: 188-197, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32717384

ABSTRACT

There is limited information on how to perform in vitro release tests for intravenously administered parenteral formulations and how to relate the in vitro release with an in vivo pharmacokinetic parameter after the administration of the formulation. In this study, the effect of hydrodynamics (using sample and separate and continuous flow conditions) and medium components (synthetic surfactants, albumin and buffers) on the release of Amphotericin B from the liposomal Ambisome® formulation were investigated. Pharmacokinetic modeling of plasma concentration profiles from healthy subjects administered Ambisome® was used to estimate the in vivo release rate constant of drug from the formulation in order to compare it with the in vitro release profiles. With the estimated in vivo and in vitro release rate constants, release profiles were generated. Two approaches were followed: comparison of in vivo and in vitro release rate constants and comparison of the area under the percent release-time curve from observed in vitro release data and simulated in vivo release data. Albumin was found to be most critical factor for the release of the drug by having a negative effect on the amount of Amphotericin B released. The release profiles obtained with the sample and separate method in both Krebs Ringer buffer- and Phosphate Saline buffer - albumin 4.0% w/v were predictive of the in vivo release profiles in healthy subjects. Determining the factors affecting drug release from parenteral formulations and relating the release profiles to a pharmacokinetic parameter in vivo supports the development of in vitro in vivo relations for parenteral products.


Subject(s)
Amphotericin B/pharmacokinetics , Antifungal Agents/pharmacokinetics , Models, Biological , Amphotericin B/administration & dosage , Antifungal Agents/administration & dosage , Drug Liberation , Healthy Volunteers , Humans , Hydrodynamics , Infusions, Intravenous , Liposomes
2.
Eur J Pharm Biopharm ; : 177-187, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32147578

ABSTRACT

In vitro release testing is a useful tool for the quality control of controlled release parenteral formulations, but in vitro release test conditions that reflect or are able to predict the in vivo performance are advantageous. Therefore, it is important to investigate the factors that could affect drug release from formulations and relate them to in vivo performance. In this study the effect of media composition including albumin presence, type of buffer and hydrodynamics on drug release were evaluated on a liposomal Amphotericin B formulation (Ambisome®). A physiologically based pharmacokinetic (PBPK) model was developed using plasma concentration profiles from healthy subjects, in order to investigate the impact of each variable from the in vitro release tests on the prediction of the in vivo performance. It was found that albumin presence was the most important factor for the release of Amphotericin B from Ambisome®; both hydrodynamics setups, coupled with the PBPK model, had comparable predictive ability for simulating in vivo plasma concentration profiles. The PBPK model was extrapolated to a hypothetical hypoalbuminaemic population and the Amphotericin B plasma concentration and its activity against fungal cells were simulated. Selected in vitro release tests for these controlled release parenteral formulations were able to predict the in vivo AmB exposure, and this PBPK driven approach to release test development could benefit development of such formulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...