Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 861620, 2022.
Article in English | MEDLINE | ID: mdl-36262251

ABSTRACT

Chitinases are enzymes responsible for the hydrolysis of glycosidic linkages within chitin chains. In insects, chitinases are typically members of the multigenic glycoside hydrolase family 18 (GH18). They participate in the relocation of chitin during development and molt, and in digestion in detritivores and predatory insects, and they control the peritrophic membrane thickness. Chitin metabolism is a promising target for developing vector control strategies, and knowledge of the roles of chitinases may reveal new targets and illuminate unique aspects of their physiology and interaction with microorganisms. Rhodnius prolixus is an important vector of Chagas disease, which is caused by the parasite Trypanosoma cruzi. In this study, we performed annotation and structural characterization of nine chitinase and chitinase-like protein genes in the R. prolixus genome. The roles of their corresponding transcripts were studied in more depth; their physiological roles were studied through RNAi silencing. Phylogenetic analysis of coding sequences showed that these genes belong to different subfamilies of GH18 chitinases already described in other insects. The expression patterns of these genes in different tissues and developmental stages were initially characterized using RT-PCR. RNAi screening showed silencing of the gene family members with very different efficiencies. Based on the knockdown results and the general lack of information about subgroup VIII of GH18, the RpCht7 gene was chosen for phenotype analysis. RpCht7 knockdown doubled the mortality in starving fifth-instar nymphs compared to dsGFP-injected controls. However, it did not alter blood intake, diuresis, digestion, molting rate, molting defects, sexual ratio, percentage of hatching, or average hatching time. Nevertheless, female oviposition was reduced by 53% in RpCht7-silenced insects, and differences in oviposition occurred within 14-20 days after a saturating blood meal. These results suggest that RpCht7 may be involved in the reproductive physiology and vector fitness of R. prolixus.

2.
Parasitol Res ; 121(2): 513-520, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35067743

ABSTRACT

Phlebotomine sand flies are the main vectors of Leishmania genus species worldwide; therefore, the detection of some reproductive parasites, such as Wolbachia, has been considered a possible strategy for biological control. In Mexico, leishmaniasis cases have been recorded in 25 states, yet only two sand fly species have been related to Wolbachia spp. Although the state of Tabasco has a high number of leishmaniasis cases, only few studies have been done on sand fly species. The aim of this study was to analyze the diversity of sand fly species and to detect Wolbachia spp. and/or Leishmania spp. in the captured specimens. Sand flies were collected at the locality of Huimango, Tabasco, Mexico, during October 2019, using nine light traps (CDC) and two Shannon traps per night. The specimens were identified and females were analyzed by PCR for the DNA detection for pathogens. A total of 193 sand fly specimens belonging to five species were morphologically identified. Pintomyia ovallesi was the most abundant species (76.84%), followed by Micropygomyia cayennensis (6.40%). Furthermore, first records of four sand fly species were established for the state of Tabasco, thereby increasing the species richness in the state from four to eight. We observed a natural infection rate of 9.7% (10/103) for Leishmania and 0.91% (1/103) for Wolbachia. The importance of conducting entomological surveys in endemic areas of leishmaniasis in Mexico is highlighted, to determine whether other sand fly species may be potential vectors of Leishmania spp., and if some Wolbachia strains could be relevant for the control of leishmaniasis.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Psychodidae , Wolbachia , Animals , DNA , Female , Insect Vectors , Leishmania/genetics , Mexico , Psychodidae/genetics , Wolbachia/genetics
3.
Front Physiol ; 10: 122, 2019.
Article in English | MEDLINE | ID: mdl-30873040

ABSTRACT

Insect ß-1,3-glucanases belong to Glycoside Hydrolase Family 16 (GHF16) and are involved in digestion of detritus and plant hemicellulose. In this work, we investigated the role of GHF16 genes in Aedes aegypti larvae, due to their detritivore diet. Aedes aegypti genome has six genes belonging to GHF16 (Aae GH16.1 - Aae GH16.6), containing two to six exons. Sequence analysis suggests that five of these GHF16 sequences (Aae GH16.1, 2, 3, 5, and 6) contain the conserved catalytic residues of this family and correspond to glucanases. All genomes of Nematocera analyzed showed putative gene duplications corresponding to these sequences. Aae GH16.4 has no conserved catalytic residues and is probably a ß-1,3-glucan binding protein involved in the activation of innate immune responses. Additionally, Ae. aegypti larvae contain significant ß-1,3-glucanase activities in the head, gut and rest of body. These activities have optimum pH about 5-6 and molecular masses between 41 and 150 kDa. All GHF16 genes above showed different levels of expression in the larval head, gut or rest of the body. Knock-down of AeGH16.5 resulted in survival and pupation rates lower than controls (dsGFP and water treated). However, under stress conditions, severe mortalities were observed in AeGH16.1 and AeGH16.6 knocked-down larvae. Enzymatic assays of ß-1,3-glucanase in AeGH16.5 silenced larvae exhibited lower activity in the gut and no change in the rest of the body. Chromatographic activity profiles from gut samples after GH16.5 silencing showed suppression of enzymatic activity, suggesting that this gene codes for the digestive larval ß-1,3-glucanase of Ae. aegypti. This gene and enzyme are attractive targets for new control strategies, based on the impairment of normal gut physiology.

4.
Parasit Vectors ; 11(1): 614, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30501613

ABSTRACT

BACKGROUND: The sand fly Lutzomyia longipalpis is the main vector of American visceral leishmaniasis, a disease caused by parasites of the genus Leishmania. Adults of this insect feed on blood (females only) or sugar from plant sources, but their digestion of carbohydrates is poorly studied. Beta-glycosides as esculin and amygdalin are plant compounds and release toxic compounds as esculetin and mandelonitrile when hydrolyzed. Beta-glucosidase and trehalase are essential enzymes in sand fly metabolism and participate in sugar digestion. It is therefore possible that the toxic portions of these glycosides, released during digestion, affect sand fly physiology and the development of Leishmania. RESULTS: We tested the oral administration to sand flies of amygdalin, esculin, mandelonitrile, and esculetin in the sugar meal. These compounds significantly decreased the longevity of Lutzomyia longipalpis females and males. Lutzomyia longipalpis adults have significant hydrolytic activities against esculin and feeding on this compound cause changes in trehalase and ß-glucosidase activities. Female trehalase activity is inhibited in vitro by esculin. Esculin is naturally fluorescent, so its ingestion may be detected and quantified in whole insects or tissue samples stored in methanol. Mandelonitrile neither affected the amount of sugar ingested by sand flies nor showed repellent activity. Our results show that mandelonitrile significantly reduces the viability of L. amazonensis, L. braziliensis, L. infantum and L. mexicana, in a concentration-dependent manner. Esculetin caused a similar effect, reducing the number of L. infantum and L. mexicana. Female L. longipalpis fed on mandelonitrile had a reduction in the number of parasites and prevalence of infection after seven days of infection with L. mexicana, either by counting in a Neubauer chamber or by qPCR assays. CONCLUSIONS: Glycosides have significant effects on L. longipalpis longevity and metabolism and also affect the development of parasites in culture and inside the insect. These observations might help to conceptualize new vector control strategies using transmission blocking sugar baits.


Subject(s)
Glycosides/toxicity , Insect Control/methods , Insect Vectors/enzymology , Insect Vectors/parasitology , Leishmania/growth & development , Psychodidae/enzymology , Psychodidae/parasitology , Acetonitriles/toxicity , Amygdalin/toxicity , Animals , Esculin/toxicity , Female , Glycosides/administration & dosage , Leishmaniasis/prevention & control , Leishmaniasis/transmission , Male , Trehalase/drug effects , Umbelliferones/administration & dosage , Umbelliferones/toxicity , beta-Glucosidase/drug effects
5.
PLoS One ; 11(3): e0151403, 2016.
Article in English | MEDLINE | ID: mdl-27007411

ABSTRACT

Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.


Subject(s)
Aedes/growth & development , Glucan 1,3-beta-Glucosidase/metabolism , Larva/enzymology , Saccharomyces cerevisiae/enzymology , Animals
6.
Parasit Vectors ; 9: 114, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26928036

ABSTRACT

BACKGROUND: Triatomines, which are the vectors of Trypanosoma cruzi, have been considered to be exclusive blood feeders for more than 100 years, since the discovery of Chagas disease. METHODS: We offered artificial sugar meals to the laboratory model-insect Rhodnius prolixus, which is considered a strict haematophagous insect. We registered feeding by adding colorant to sugar meals. To assess putative phytophagy, fruits of the tomato Solanum lycopersicum were offered to R. prolixus and the presence of tomato DNA was assessed in the insects using PCR. We also assessed longevity, blood feeding and urine production of fruit-exposed triatomines and control insects. RESULTS: All instars of R. prolixus ingested sugar from artificial sugar meals in laboratory conditions. First instar R. prolixus ingested plant tissue from S. lycopersicum fruits, and this increased the amount of blood ingested and urine excreted. Decreased mortality was also observed after blood feeding. Exposure to S. lycopersicum increased longevity and reduced weight loss caused by desiccation. CONCLUSIONS: We describe here the first report of sugar feeding and phytophagy in a species that was considered to be a strict blood-feeder for over a century. We suggest that local plants might be not merely shelters for insects and vertebrate hosts as previously described, but may have a nutritional role for the maintenance of the triatomine vectors. The description of sugar and plant meals in triatomines opens new perspectives for the study and control of Chagas Disease.


Subject(s)
Insect Vectors , Rhodnius/physiology , Animals , Carbohydrates , Coloring Agents/analysis , DNA, Plant/analysis , Feeding Behavior , Solanum lycopersicum , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...