Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Adv ; 70: 108281, 2024.
Article in English | MEDLINE | ID: mdl-37956796

ABSTRACT

In their pristine state, starch and lignin are abundant and inexpensive natural polymers frequently considered green alternatives to oil-based and synthetic polymers. Despite their availability and owing to their physicochemical properties; starch and lignin are not often utilized in their pristine forms for high-performance applications. Generally, chemical and physical modifications transform them into starch- and lignin-based materials with broadened properties and functionality. In the last decade, the combination of starch and lignin for producing reinforced materials has gained significant attention. The reinforcing of starch matrices with lignin has received primary focus because of the enhanced water sensitivity, UV protection, and mechanical and thermal resistance that lignin introduces to starch-based materials. This review paper aims to assess starch-lignin materials' production and characterization technologies, highlighting their physicochemical properties, outcomes, challenges, and opportunities. First, this paper describes the current status, sources, and chemical modifications of lignin and starch. Next, the discussion is oriented toward starch-lignin materials and their production approaches, such as blends, composites, plasticized/crosslinked films, and coupled polymers. Special attention is given to the characterization methods of starch-lignin materials, focusing on their advantages, disadvantages, and expected outcomes. Finally, the challenges, opportunities, and future perspectives in developing starch-lignin materials, such as adhesives, coatings, films, and controlled delivery systems, are discussed.


Subject(s)
Lignin , Starch , Lignin/chemistry , Starch/chemistry , Water , Polymers
2.
Carbohydr Polym ; 313: 120846, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37182932

ABSTRACT

Starch is a natural polymer with a relatively simple structure and limited solubility in water. Kraft lignin (KL) is a complex biopolymer obtained as a by-product from the delignification of wood and grasses. The present work reports developing a temperature-responsive high molecular weight macromolecule from crosslinking KL and starch (KLS). The NMR and XPS analyses quantified the changes in the aromatic and anhydroglucose units of KL and starch, observing a higher content of C-O-C bonds, which confirms the presence of glycerol ether cross-linkages between starch and KL in KLS. The rheological analysis of KLS dispersions revealed the formation of a thermo-responsive structured network. The temperature-dependent water solubility and rheological characteristics of KLS were related to the presence of hydrophilic starch chains, crosslinking degree, and physicochemical characteristics of KL. The incorporation of KL and ether crosslinks increased the thermal stability of KLS. Because of its multiple functional groups and large molecular weight (3.6-4.2 × 105 g/mol) that was arranged in an extended globular shape, KLS-5 formed a gel-like structure after a heating-cooling treatment. Overall, the results confirmed that incorporating lignin in starch would fabricate sustainable materials with potentially altered applications, such as temperature-responsive hydrogels and films.

3.
Carbohydr Polym ; 308: 120619, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813331

ABSTRACT

The composite of magnetite (Fe3O4) and cellulose nanocrystal (CNC) is considered a potential adsorbent for water treatment and environmental remediation. In the current study, a one-pot hydrothermal procedure was utilized for magnetic cellulose nanocrystal (MCNC) development from microcrystalline cellulose (MCC) in the presence of ferric chloride, ferrous chloride, urea, and hydrochloric acid. The x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy analysis confirmed the presence of CNC and Fe3O4, while transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis verified their respective sizes (< 400 nm and ≤ 20 nm) in the generated composite. To have an efficient adsorption activity for doxycycline hyclate (DOX), the produced MCNC was post-treated using chloroacetic acid (CAA), chlorosulfonic acid (CSA), or iodobenzene (IB). The introduction of carboxylate, sulfonate, and phenyl groups in the post-treatment was confirmed by FTIR and XPS analysis. Such post treatments decreased the crystallinity index and thermal stability of the samples but improved their DOX adsorption capacity. The adsorption analysis at different pHs revealed the increase in the adsorption capacity by reducing the basicity of the medium due to decreasing electrostatic repulsions and inducing strong attractions.

4.
Biomacromolecules ; 24(3): 1400-1416, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36802502

ABSTRACT

This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced 1H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes. The deposition behavior of the copolymer, studied by a quartz crystal microbalance with dissipation (QCM-D) analysis, revealed that the copolymer with a larger molecular weight (ALS-5) deposited more and generated more compact adlayer than the copolymer with a smaller molecular weight on a solid surface. Owing to its higher charge density, molecular weight, and extended coil-like structure, ALS-5 produced larger flocs with faster sedimentation in the colloidal systems, regardless of the extent of agitation and gravitational force. The results of this work provide a new approach to preparing a lignin-starch polymer, i.e., a sustainable biomacromolecule with excellent flocculation performance in colloidal systems.


Subject(s)
Polymers , Humans , Alkanesulfonates , Flocculation , Lignin/chemistry , Polymers/chemistry , Starch/chemistry
5.
J Environ Manage ; 328: 116999, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36516704

ABSTRACT

Lignin is an abundant phenolic polymer produced vastly in pulping processes that could be further valorized. In this work, anionic (AKLs) and cationic (CKLs) lignin-based polymers were made by polymerizing kraft lignin (KL) with acrylic acid (AA) or [2-(methacryloyloxy) ethyl] trimethyl-ammonium chloride (METAC), respectively. In the polymerization reactions, various molar ratios of AA or METAC to KL were applied to produce AKLs and CKLs with different characteristics. The produced AKLs and CKLs were used in single and dual systems to flocculate aluminum oxide in suspension. To assess the interaction of these lignin-based polymers with the aluminum oxide particles; the zeta potential, adsorption, and flocculation of the colloidal systems were evaluated comprehensively. The flocculation performance of the lignin-derived polymers was compared with that of the homopolymers of AA and METAC (PAA and PMETAC) and commercially used flocculants. In single polymer systems, among the anionic synthesized polymers and homopolymers, KL-A4 (an AKL) was the best flocculant for the aluminum oxide suspensions owing to its largest molecular weight (330 × 103 g/mol) and highest charge density (-4.2 mmol/g). Remarkably, when KL-A4 and KL-C4 (the CKL with the highest molecular weight and charge density) were used subsequently in a dual polymer system, a larger adsorbed mass and a more viscous adlayer were formed than those of single polymer systems on the surface of aluminum oxide particles. The synergy between KL-A4 and KL-C4 was even stronger than that between homopolymers, which led to more significant adsorption on the aluminum oxide surface and, consequently, more efficient flocculation, producing larger (22 µm) and stronger flocs, regardless of the agitation intensity used in the systems.


Subject(s)
Lignin , Polymers , Flocculation , Molecular Weight
6.
Bioresour Technol ; 329: 124891, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33676355

ABSTRACT

The aim of this work was to study the production and characterization of tall oil lignin (TOL) from tall oil soap (TOS) of the kraft pulping process following a new process (i.e., LignoTall). Also, the properties of the TOL and kraft lignin (KL) produced via LignoForce technology were compared. Although TOL and KL were generated from the same black liquor and softwood species, they had remarkably different characteristics, confirming the impact of the production methods on the physicochemical properties of the isolated lignin. TOL had higher molecular weight, O/C elemental ratio, sulfur content, and carboxylate-OH content but lower methoxy group content than did KL. The high sulfur group content (7.3%) of TOL can be very useful for the vulcanization process. Moreover, the high carboxylate-OH content of TOL (0.56 mmol/g) is desirable for its utilization in epoxy resin production.


Subject(s)
Lignin , Plant Oils
7.
Polymers (Basel) ; 10(2)2018 Jan 23.
Article in English | MEDLINE | ID: mdl-30966143

ABSTRACT

Aggregation and coalescence are major drawbacks that contribute to polydispersity in microparticles and nanoparticles fabricated from diverse biopolymers. This study presents the evaluation of a novel method for the direct, electrospray-induced fabrication of small, CaCl2/ethanol-hardened low methoxy pectin/arabinoxylans composite microbeads. The electrospray method was evaluated to control particle size by adjusting voltage, flux, and crosslinking solution content of CaCl2/ethanol. A bead diameter of 1µm was set as reference to test the capability of this method. Insulin was chosen as a model carried molecule. Statistical analysis was a central composite rotatable design (CCRD) with a factorial arrangement of 24. The variables studied were magnitude and particle size dispersion. For the determination of these variables, light diffraction techniques, scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were used. Major interaction was found for ethanol and CaCl2 as well as flow and voltage. Stable spherical structures of core⁻shell beads were obtained with neither aggregation nor coalescence for all treatments where ethanol was included in the crosslinking solution, and the average diameter within 1 ± 0.024 µm for 11 KV, 75% ethanol with 11% CaCl2, and flow of 0.97 mL/h.

SELECTION OF CITATIONS
SEARCH DETAIL
...