Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 153: 113508, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076594

ABSTRACT

Alcohol Use Disorder (AUD) is among the most prevalent mental illnesses, and due to the low efficacy of the current medication, it is essential to find new biological targets that could modulate alcohol consumption. Since Galanin (1-15) [GAL(1-15)] produces a loss of motivational behaviour by an artificial reinforcer and decreases the preference an alcohol consumption in a voluntary alcohol intake, we have studied the role of GAL(1-15) in alcohol-seeking behaviour and the involvement of the corticomesolimbic system as well as the role of GAL(1-15) in context-induced alcohol relapse. In rats, we have studied GAL(1-15)-effects on alcohol-seeking in self-administration, in fixed-ratio (FR1) and progressive-ratio (PR), and the involvement of GAL receptors using siRNA GALR1 or GALR2 knockdown animals. We have analysed the transcriptional changes of C-Fos, dopamine receptors, GAL receptors and 5HT1A receptors in the corticomesolimbic system. Also, we have examined the effect of GAL(1-15) in context-induced alcohol relapse. GAL(1-15) substantially reduced alcohol-seeking behaviour in the operant self-administration model in an FR1 protocol and at the breaking point in a PR schedule. GALR1and GALR2 were involved in these effects, as indicated by the analysis by GALR2 antagonist and GALR1 and GALR2 knockdown animals. Notably, the mechanism of GAL(1-15)-mediated actions involved changes in C-Fos, Dopamine receptors and 5HT1A expression in the ventral tegmental area, accumbens nucleus and prefrontal cortex. Significantly, GAL(1-15) reduced the context-induced alcohol relapse. These results open up the possibility to use GAL(1-15) as a novel strategy in AUD.


Subject(s)
Alcoholism , Galanin , Alcoholism/drug therapy , Alcoholism/metabolism , Animals , Ethanol , Galanin/metabolism , Galanin/pharmacology , Galanin/therapeutic use , Peptide Fragments , Proto-Oncogene Proteins c-fos/metabolism , Rats , Receptor, Galanin, Type 2/drug effects , Receptor, Galanin, Type 2/metabolism , Receptors, Dopamine , Receptors, Galanin/drug effects , Receptors, Galanin/metabolism , Recurrence
2.
Biomedicines ; 10(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35203621

ABSTRACT

Alcohol use disorder (AUD) is highly prevalent, and over 50% of AUD patients also suffer major depressive disorders. Selective 5-HT reuptake inhibitors (SSRIs) can reduce rodent ethanol drinking but exert modest clinical efficacy in alcoholic individuals. Finding new pharmacological strategies that could modulate alcohol consumption and depression is necessary. We have analyzed the effect of Galanin (1-15) [GAL(1-15)] on escitalopram (ESC)-mediated effect in alcohol consumption using the alcohol self-administration test, the nuclei involved in the effect, and whether GAL(1-15) + ESC modulated the response in despair or anxiety tests in animals under chronic alcohol intake. GAL(1-15) + ESC combination substantially reduced alcohol intake in the alcohol self-administration test and, moreover, enhanced the reduction of reward capacity of ESC on different reinforcers such as sucrose or saccharine. GAL(1-15) + ESC coadministration significantly decreases the number of C-Fos-IR TH cell bodies in the VTA, and PCA analysis suggests that one functional network, including VTA, RMTg and DR, is involved in these effects. Significantly in rats with chronic alcohol consumption, GAL(1-15) reversed adverse ESC-mediated effects in the depression-related behavioural test and forced swimming test. The results open up the possibility of using GAL(1-15) in combination with the SSRI Escitalopram as a novel strategy in AUD comorbidity with depression.

3.
Int J Neuropsychopharmacol ; 25(4): 307-318, 2022 04 19.
Article in English | MEDLINE | ID: mdl-34891163

ABSTRACT

BACKGROUND: Selective serotonergic reuptake inhibitors, including fluoxetine (FLX), are the most commonly used for the treatment of major depression. However, they are effective for remission in only 30% of patients. Recently, we observed that Galanin (1-15) [GAL(1-15)] enhanced the antidepressant effects of FLX in naïve animals, suggesting a new augmentation strategy in depression. METHODS: We have analyzed in an animal model of depression, the olfactory bulbectomy (OBX) rats, the effect of GAL(1-15) on FLX-mediated responses in the forced swimming test and the sucrose preference test and the involvement of GAL receptor 2 with its antagonist, M871. We have also studied the corticosterone levels in OBX after the coadministration of GAL(1-15) with FLX. Moreover, we studied whether the effects of GAL(1-15) on FLX actions were mediated via auto- and heteroreceptor 5-HT1A (5-HT1AR), analyzing the binding characteristics, mRNA levels, and functionality of 5-HT1AR in the dorsal hippocampus. RESULTS: GAL(1-15) enhances the antidepressant-like effects induced by FLX in OBX animals in the forced swimming test and the sucrose preference test. The involvement of the GALR2 was demonstrated with M871. Importantly, the mechanism underlying the GAL(1-15)/FLX interactions in the OBX animals involves the 5-HT1AR in the hippocampus at the plasma membrane (increase of affinity and density of 5HT1AR in the DG) and transcriptional (increase of 5HT1AR mRNA levels in DG and CA1) levels. Besides, the coadministration of GAL(1-15) and FLX also reduced OBX-increased corticosterone levels. CONCLUSIONS: The results open the possibility to use GAL(1-15) in combination with FLX as a novel strategy for the treatment of depression.


Subject(s)
Depression , Fluoxetine , Animals , Antidepressive Agents/pharmacology , Corticosterone , Depression/drug therapy , Depression/metabolism , Fluoxetine/pharmacology , Galanin/pharmacology , Humans , Peptide Fragments , RNA, Messenger , Rats , Rats, Sprague-Dawley , Sucrose
4.
Int J Mol Sci ; 22(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34639188

ABSTRACT

Selective 5-HT reuptake inhibitor antidepressants (SSRIs) are the first choice in major depressive disorder (MDD), but 50% of affected patients do not show improvement. Galanin(1-15) [GAL(1-15)] enhanced Fluoxetine antidepressant-like effects in an animal model of depression, the olfactory bulbectomy (OBX); however, further detailed analysis of GAL(1-15) effects as augmentation treatment in OBX rats are needed. In OBX rats, we analysed the effect of GAL(1-15) on Escitalopram (ESC)-mediated responses in behavioural tests related to despair. We studied whether GAL(1-15) effects involved 5-HT1AR using an in vivo model siRNA 5-HT1A knockdown rats. Moreover, we analysed by immunohistochemistry the expression of the immediate-early gene c-Fos (c-Fos IR) after the administration of GAL(1-15)+ESC in OBX rats in several nuclei involved in MDD. GAL(1-15) enhances the antidepressant-like effects of ESC, and the GALR2 antagonist M871 blocked GAL(1-15) mediated actions. The downregulation of 5-HT1AR by siRNA was sufficient to block GAL(1-15) effects. Our immunohistochemistry and principal component analysis (PCA) analysis suggest that two functional networks are involved in these effects; one includes the lateral (LHb) and medial (mHb) habenula, dorsal raphe (DR) and ventral tegmental area (VTA), and the other consists of the dentate gyrus (DG), and prefrontal cortex (PFC). The results open up the possibility of using GAL(1-15) in combination with SSRIs as a novel strategy for treating MDD.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Behavior, Animal/drug effects , Citalopram/pharmacology , Depression/drug therapy , Galanin/pharmacology , Animals , Depression/metabolism , Depression/pathology , Drug Therapy, Combination , Male , Rats , Rats, Sprague-Dawley
5.
Cells ; 10(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34440670

ABSTRACT

The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Dopaminergic Neurons/metabolism , Mental Disorders/metabolism , Receptor Cross-Talk , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Serotonin, 5-HT1/metabolism , Serotonergic Neurons/metabolism , Animals , Antidepressive Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Brain/drug effects , Brain/physiopathology , Dopaminergic Neurons/drug effects , Humans , Mental Disorders/drug therapy , Mental Disorders/physiopathology , Mental Disorders/psychology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Galanin, Type 1/metabolism , Receptor, Galanin, Type 2/metabolism , Receptor, Serotonin, 5-HT2A/genetics , Receptors, Dopamine D2/metabolism , Receptors, Serotonin, 5-HT1/genetics , Signal Transduction
6.
Brain Sci ; 10(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825478

ABSTRACT

The binge-drinking pattern of EtOH consumption, which is frequently observed in adolescents, is known to induce several neurobehavioral alterations, but protection strategies against these impairments remain scarcely explored. We aimed to study the protective role of treadmill physical exercise on the deficits caused after repeated cycles of binge-like EtOH exposure in the cognition, motivation, exploration, and emotion of C57BL/6J mice from adolescence to adulthood. Animals were divided into four groups: control group, exercised group, EtOH group, and exercised + EtOH group (20% in tap water). The exercise was performed for 20 min, 5 days/week at 20 cm/s. Then, animals were submitted to several behavioral tasks. Compared to binge-drinking mice, the exercised + EtOH group exhibited diminished anxiolytic-related behaviors in the elevated plus-maze, enhanced exploratory activity in the open field, reduced preference for alcohol odor when another rewarding stimulus was present (social stimulus) and lower latency to start self-cleaning behaviors in the sucrose splash test. In contrast, other measurements such as habituation learning and working memory were not improved by exercise. Besides, exercise was not able to reduce alcohol consumption across the weeks. In conclusion, physical activity during adolescence and early adulthood could buffer certain neurobehavioral alterations associated with binge-drinking, despite not reducing the quantity of consumed alcohol.

7.
J Psychopharmacol ; 33(6): 737-747, 2019 06.
Article in English | MEDLINE | ID: mdl-31081442

ABSTRACT

BACKGROUND: Anhedonia is a core feature of depressive disorders. The galanin N-terminal fragment (1-15) plays a role in mood regulation since it induces depression and anxiogenic-like effects in rats. In this study, we analysed galanin N-terminal fragment (1-15) actions in anhedonic-like behaviours in rats using operant and non-operant tests and the areas involved with these effects. METHODS: Galanin N-terminal fragment (1-15) effects were analysed in saccharin self-administration, sucrose preference, novelty-suppressed feeding and female urine sniffing tests. The areas involved in galanin N-terminal fragment (1-15)-mediated effects were studied with positron emission tomography for in vivo imaging, and we analysed the ventral tegmental area and nucleus accumbens. Galanin N-terminal fragment (1-15) had effects on the mRNA expression of the dopamine transporters Dat and Vmat2; the C-Fos gene; the dopamine receptors D1, D2, D3, D5; and the galanin receptors 1 and 2. RESULTS: Galanin N-terminal fragment (1-15) at a concentration of 3 nmol induced a strong anhedonia-like phenotype in all tests. The involvement of galanin receptor 2 was demonstrated with the galanin receptor 2 antagonist M871 (3 nmol). The 18F-fluorodeoxyglucose positron emission tomography images indicated the action of galanin N-terminal fragment (1-15) over several nuclei of the limbic system. Galanin N-terminal fragment (1-15)-mediated effects also involved changes in the expression of Dat, Vmat2, D3 and galanin receptors in the ventral tegmental area as well as the expression of C-Fos, D1, D2 and D3 and TH immunoreactivity in the nucleus accumbens. CONCLUSIONS: Our results indicated that galanin N-terminal fragment (1-15) exerts strong anhedonic-like effects and that this effect was accompanied by changes in the dopaminergic mesolimbic system. These results may provide a basis for the development of novel therapeutic strategies using galanin N-terminal fragment (1-15) analogues for the treatment of depression and reward-related diseases.


Subject(s)
Anhedonia/physiology , Dopamine/metabolism , Galanin/metabolism , Receptors, Dopamine/metabolism , Animals , Behavior, Animal/physiology , Depression/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Female , Male , Nucleus Accumbens/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Ventral Tegmental Area/metabolism , Vesicular Monoamine Transport Proteins/metabolism
8.
Neuropharmacology ; 155: 104-112, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31128121

ABSTRACT

Galanin (1-15) [GAL(1-15)] participates in mood regulation and depression. GAL(1-15) is also able to enhance the antidepressant effects induced by Fluoxetine (FLX) in the forced swimming test through interaction between GALR1-GALR2 and 5-HT1A receptors that induced changes in the binding characteristics and mRNA of the 5-HT1AR in the hippocampus. Since the medial prefrontal cortex (mPFC) is a core region for the interaction between emotional processing and cognition with a high density of 5-HT1AR and GALR1 and GALR2, we have analyzed the binding characteristics and mRNA levels of 5-HT1AR in the mPFC after GAL(1-15)-FLX administration in the rats. GAL(1-15) increased the Kd and the Bmax of the 5HT1AR agonist binding in the mPFC as well as the mRNA levels of 5-HT1AR in mPFC. Moreover, GAL(1-15) reversed the effects of memory impairment induced by FLX(10 mg/kg) in the Novel Object Recognition task. GALR2 was involved in these effects, since the specific GALR2 antagonist M871 blocked GAL(1-15) mediated actions at behavioral level. On the contrary GAL(1-15) did not reverse the effect of FLX in the Object Location Memory task. In conclusion, our results describe an interactions between GAL(1-15) and FLX in the mPFC involving interactions at the 5-HT1AR receptor level in the plasma membrane with changes at the transcriptional level with implications also at functional level. The GALR1-GALR2-5-HT1A heteroreceptor could be postulated to be used to reverse some of the adverse effects of FLX on memory processes.


Subject(s)
Fluoxetine/metabolism , Galanin/metabolism , Peptide Fragments/metabolism , Prefrontal Cortex/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Recognition, Psychology/drug effects , Selective Serotonin Reuptake Inhibitors/metabolism , Animals , Drug Interactions/physiology , Fluoxetine/toxicity , Galanin/pharmacology , Galanin/therapeutic use , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Recognition, Psychology/physiology , Selective Serotonin Reuptake Inhibitors/toxicity
9.
Addict Biol ; 24(1): 76-87, 2019 01.
Article in English | MEDLINE | ID: mdl-29210146

ABSTRACT

Alcohol consumption is considered a major risk factor for disease and mortality worldwide. In the absence of effective treatments in alcohol use disorders, it is important to find new biological targets that could modulate alcohol consumption. We tested the role of the N-terminal galanin fragment (1-15) [GAL(1-15)] in voluntary ethanol consumption in rats using the two-bottle choice paradigm as well as compare the effects of GAL(1-15) with the whole molecule of GAL. We describe for the first time that GAL(1-15), via central mechanisms, induces a strong reduction in preference and ethanol consumption in rats. These effects were significantly different than GAL. GAL receptor (GALR) 2 was involved in these effects, because the specific GALR2 antagonist M871 blocked GAL(1-15) mediated actions in preference and ethanol intake. Importantly, the mechanism of this action involves changes in GALR expression and also in immediate-early gene C-Fos and receptors-internalization-related gene Rab5 in the striatum. The relevance of the striatum as a target for GAL(1-15) was supported by the effect of GAL(1-15) on the locomotor activity of rats after ethanol administration. These results may give the basis for the development of novel therapeutics strategies using GAL(1-15) analogues for the treatment of alcohol use disorders in humans.


Subject(s)
Alcohol Drinking , Behavior, Animal/drug effects , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Galanin/pharmacology , Peptide Fragments/pharmacology , Animals , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Injections, Intraventricular , Locomotion/drug effects , Neostriatum/metabolism , Peptides/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Receptor, Galanin, Type 1/drug effects , Receptor, Galanin, Type 1/genetics , Receptor, Galanin, Type 1/metabolism , Receptor, Galanin, Type 2/antagonists & inhibitors , Receptor, Galanin, Type 2/drug effects , Receptor, Galanin, Type 2/genetics , Receptor, Galanin, Type 2/metabolism , Self Administration , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
10.
Article in English | MEDLINE | ID: mdl-30042672

ABSTRACT

This perspective article provides observations supporting the view that nigro-striatal dopamine neurons and meso-limbic dopamine neurons mainly communicate through short distance volume transmission in the um range with dopamine diffusing into extrasynaptic and synaptic regions of glutamate and GABA synapses. Based on this communication it is discussed how volume transmission modulates synaptic glutamate transmission onto the D1R modulated direct and D2R modulated indirect GABA pathways of the dorsal striatum. Each nigro-striatal dopamine neuron was first calculated to form large numbers of neostriatal DA nerve terminals and then found to give rise to dense axonal arborizations spread over the neostriatum, from which dopamine is released. These neurons can through DA volume transmission directly influence not only the striatal GABA projection neurons but all the striatal cell types in parallel. It includes the GABA nerve cells forming the island-/striosome GABA pathway to the nigral dopamine cells, the striatal cholinergic interneurons and the striatal GABA interneurons. The dopamine modulation of the different striatal nerve cell types involves the five dopamine receptor subtypes, D1R to D5R receptors, and their formation of multiple extrasynaptic and synaptic dopamine homo and heteroreceptor complexes. These features of the nigro-striatal dopamine neuron to modulate in parallel the activity of practically all the striatal nerve cell types in the dorsal striatum, through the dopamine receptor complexes allows us to understand its unique and crucial fine-tuning of movements, which is lost in Parkinson's disease. Integration of striatal dopamine signals with other transmitter systems in the striatum mainly takes place via the receptor-receptor interactions in dopamine heteroreceptor complexes. Such molecular events also participate in the integration of volume transmission and synaptic transmission. Dopamine modulation of the glutamate synapses on the dorsal striato-pallidal GABA pathway involves D2R heteroreceptor complexes such as D2R-NMDAR, A2AR-D2R, and NTSR1-D2R heteroreceptor complexes. The dopamine modulation of glutamate synapses on the striato-entopeduncular/nigral pathway takes place mainly via D1R heteroreceptor complexes such as D1R-NMDAR, A2R-D1R, and D1R-D3R heteroreceptor complexes. Dopamine modulation of the island/striosome compartment of the dorsal striatum projecting to the nigral dopamine cells involve D4R-MOR heteroreceptor complexes. All these receptor-receptor interactions have relevance for Parkinson's disease and its treatment.

11.
Molecules ; 23(6)2018 Jun 03.
Article in English | MEDLINE | ID: mdl-29865267

ABSTRACT

Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.


Subject(s)
Depression/metabolism , Raphe Nuclei/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin/metabolism , Animals , Depression/drug therapy , Protein Binding , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 1/metabolism
12.
Front Cell Neurosci ; 12: 119, 2018.
Article in English | MEDLINE | ID: mdl-29765307

ABSTRACT

Anxiety is evoked by a threatening situation and display adaptive or defensive behaviors, found similarly in animals and humans. Neuropeptide Y (NPY) Y1 receptor (NPYY1R) and Galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the amygdala. In a previous study, GALR2 enhanced NPYY1R mediated anxiolytic actions on spatiotemporal parameters in the open field and elevated plus maze, involving the formation of GALR2/NPYY1R heteroreceptor complexes in the amygdala. Moreover, the inclusion of complementary ethological parameters provides a more comprehensive profile on the anxiolytic effects of a treatment. The purpose of the current study is to evaluate the anxiolytic effects and circuit activity modifications caused by coactivation of GALR2 and NPYY1R. Ethological measurements were performed in the open field, the elevated plus-maze and the light-dark box, together with immediate early gene expression analysis within the amygdala-hypothalamus-periaqueductal gray (PAG) axis, as well as in situ proximity ligation assay (PLA) to demonstrate the formation of GALR2/NPYY1R heteroreceptor complexes. GALR2 and NPYY1R coactivation resulted in anxiolytic behaviors such as increased rearing and head-dipping, reduced stretch attend postures and freezing compared to single agonist or aCSF injection. Neuronal activity indicated by cFos expression was decreased in the dorsolateral paracapsular intercalated (ITCp-dl) subregion of the amygdala, ventromedial hypothalamic (VMH) nucleus and ventrolateral part of the periaqueductal gray (vlPAG), while increased in the perifornical nucleus of the hypothalamus (PFX) following coactivation of GALR2 and NPYY1R. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was explicitly observed in ITCp-dl, following GALR2 and NPYY1R coactivation. Besides, knockdown of GALR2 was found to reduce the density of complexes in ITCp-dl. Taken together, these results open up the possibility that the increased anxiolytic activity demonstrated upon coactivation of NPYY1R and GALR2 receptor was related to actions on the ITCp-dl. GALR2-NPYY1R heteroreceptor complexes may inhibit neuronal activity, by also modifying the neuronal networks of the hypothalamus and the PAG. These results indicate that GALR2/NPYY1R interactions in medial paracapsular intercalated amygdala can provide a novel integrative mechanism in anxiolytic behavior and the basis for the development of heterobivalent agonist drugs targeting GALR2/NPYY1R heteromers, especially in the ITCp-dl of the amygdala for the treatment of anxiety.

13.
Folia Histochem Cytobiol ; 56(1): 49-58, 2018.
Article in English | MEDLINE | ID: mdl-29516445

ABSTRACT

INTRODUCTION: The distribution of the immunoreactive cell bodies and fibers containing neurotensin in the alpaca diencephalon was determined by an immunohistochemical technique. MATERIAL AND METHODS: The study was carried out in four male alpacas that lived at sea level. Brains of deeply anesthetized animals were fixed by perfusion with 4% paraformaldehyde. Cryostat sections were stained by a standard immunohistochemical method. RESULTS: Cell bodies containing neurotensin were observed in the zona incerta and hypothalamus. A low/moderate density of these cell bodies was observed in the lateral hypothalamic area, anterior and dorsal hypothalamic areas, suprachiasmatic nucleus, periventricular region of the hypothalamus and in the ventromedial hypothalamic nucleus. In both thalamus and hypothalamus, immunoreactive fibers showed a widespread distribution. In the thalamus, a high density of these fibers was mainly found in the midline nuclei, whereas in the hypothalamus a high density was in general observed in the whole structure. CONCLUSIONS: In comparison with other mammals, the thalamus of the alpaca showed the most widespread distribution of neurotensin-immunoreactive fibers. The widespread distribution of neurotensin through the alpaca diencephalon suggests that the peptide can be involved in many physiological actions.


Subject(s)
Camelids, New World , Diencephalon/metabolism , Neurotensin/metabolism , Animals , Cell Body/chemistry , Cell Body/metabolism , Diencephalon/chemistry , Hypothalamus/chemistry , Hypothalamus/metabolism , Immunohistochemistry , Male , Neurotensin/chemistry
14.
ACS Omega ; 2(8): 4779-4789, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28920103

ABSTRACT

Studies on serotonin-selective reuptake inhibitors have established that disturbances in the ascending 5-HT neuron systems and their 5-HT receptor subtypes and collateral networks to the forebrain contribute to the etiology of major depression and are targets for treatment. The therapeutic action of serotonin-selective reuptake inhibitors is of proven effectiveness, but the mechanisms underlying their effect are still unclear. There are many 5-HT subtypes involved; some need to be blocked (e.g., 5-HT2A, 5-HT3, and 5-HT7), whereas others need to be activated (e.g., postjunctional 5-HT1A and 5-HT4). These state-of-the-art developments are in line with the hypothesis that the development of major depression can involve an imbalance of the activity between different types of 5-HT isoreceptors. In the current study, using in situ proximity ligation assay (PLA), we report evidence for the existence of brain 5-HT1A-5-HT2A isoreceptor complexes validated in cellular models with bioluminescence resonance energy transfer (BRET2) assay. A high density of PLA-positive clusters visualizing 5-HT1A-5-HT2A isoreceptor complexes was demonstrated in the pyramidal cell layer of the CA1-CA3 regions of the dorsal hippocampus. A marked reduction in the density of PLA-positive clusters was observed in the CA1 and CA2 regions 24 h after a forced swim test session, indicating the dynamics of this 5-HT isoreceptor complex. Using a bioinformatic approach, previous work indicates that receptors forming heterodimers demonstrate triplet amino acid homologies. The receptor interface of the 5-HT1A-5-HT2A isoreceptor dimer was shown to contain the LLG and QNA protriplets in the transmembrane and intracellular domain, respectively. The 5-HT2A agonist TCB2 markedly reduced the affinity of the 5-HT1A agonist ipsapirone for the 5-HT1A agonist binding sites in the frontal lobe using the 5-HT1A radioligand binding assay. This action was blocked by the 5-HT2A antagonist ketanserin. It is proposed that the demonstrated 5-HT1A-5-HT2A isoreceptor complexes may play a role in depression through integration of 5-HT recognition, signaling and trafficking in the plasma membrane in two major 5-HT receptor subtypes known to be involved in depression. Antagonistic allosteric receptor-receptor interactions appear to be involved in this integrative process.

15.
Front Cell Neurosci ; 11: 37, 2017.
Article in English | MEDLINE | ID: mdl-28270751

ABSTRACT

The introduction of allosteric receptor-receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor-receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and ventral striatum. The excitatory modulation by A2AR agonists of the ventral striato-pallidal GABA anti-reward system via targeting the A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complex holds high promise as a new way to treat cocaine use disorders. Neuromodulation of neuronal networks in schizophrenia via DA, adenosine, glutamate, 5-HT and neurotensin peptides and oxytocin, involving A2AR-D2R, D2R-NMDAR, A2AR-D2R-mGluR5, D2R-5-HT2A and D2R-oxytocinR heteroreceptor complexes opens up a new world of D2R protomer targets in the listed heterocomplexes for treatment of positive, negative and cognitive symptoms of schizophrenia.

16.
Neuropharmacology ; 118: 233-241, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28288814

ABSTRACT

The pharmacological treatment of major depression is mainly based on drugs elevating serotonergic (5-HT) activity. Specifically, selective 5-HT reuptake inhibitors, including Fluoxetine (FLX), are the most commonly used for treatment of major depression. However, the understanding of the mechanism of action of FLX beyond its effect of elevating 5-HT is limited. The interaction between serotoninergic system and neuropeptides signaling could be a key aspect. We examined the ability of the neuropeptide Galanin(1-15) [GAL(1-15)] to modulate the behavioral effects of FLX in the forced swimming test (FST) and studied feasible molecular mechanisms. The data show that GAL(1-15) enhances the antidepressant-like effects induced by FLX in the FST, and we demonstrate the involvement of GALR1/GALR2 heteroreceptor complex in the GAL(1-15)-mediated effect using in vivo rat models for siRNA GALR1 or GALR2 knockdown. Importantly, 5-HT1A receptors (5HT1A-R) also participate in the GAL(1-15)/FLX interactions since the 5HT1AR antagonist WAY100635 blocked the behavioral effects in the FST induced by the coadministration of GAL(1-15) and FLX. The mechanism underlying GAL(1-15)/FLX interactions affected the binding characteristics as well as the mRNA levels of 5-HT1A-R specifically in the dorsal hippocampus while leaving unaffected mRNA levels and affinity and binding sites of this receptor in the dorsal raphe. The results open up the possibility to use GAL(1-15) as for a combination therapy with FLX as a novel strategy for treatment of depression.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/physiopathology , Fluoxetine/therapeutic use , Galanin/therapeutic use , Peptide Fragments/therapeutic use , Swimming/psychology , Animals , Autoradiography , Cyclohexanes/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Delivery Systems , Drug Therapy, Combination , Hippocampus/drug effects , Hippocampus/metabolism , Immobility Response, Tonic/drug effects , Male , Piperazines/therapeutic use , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Galanin, Type 1/genetics , Receptor, Galanin, Type 1/metabolism , Receptor, Galanin, Type 2/genetics , Receptor, Galanin, Type 2/metabolism , Statistics, Nonparametric
17.
Neuropeptides ; 64: 39-45, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28196617

ABSTRACT

Galanin is a 29 amino acid neuropeptide widely distributed in neurons within the central nervous system. Galanin exerts its biological activities through three different G protein-receptors and participates in a number of functions, including mood regulation. Not only Galanin but also Galanin N-terminal fragments like Galanin(1-15) are active at the central level. In this work, we review the latest findings in studies on Galanin and Galanin(1-15) in depression-related behaviours. Our focus is on animal models for depression, and we pay some attention to research data obtained in human studies. Since Serotonin (5-HT), especially through 5-HT1A, and Galanin receptors interact at both pre-and postsynaptic level, the development of drugs targeting potential GAL1-GAL2-5-HT1A heteroreceptor complexes linked to the raphe-hippocampal 5-HT neurons may represent new treatment strategies in depression.


Subject(s)
Central Nervous System/metabolism , Depression/metabolism , Galanin/metabolism , Neuropeptides/metabolism , Receptors, Galanin/metabolism , Animals , Depressive Disorder/metabolism , Humans
18.
Anat Sci Int ; 92(2): 275-292, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26897373

ABSTRACT

An immunocytochemical technique has been used to study for the first time the distribution of fibers and cell bodies containing leucine-enkephalin (leu-enk), methionine-enkephalin (met-enk) or adrenocorticotropic hormone (ACTH) in the whole brainstem of the squirrel monkey Saimiri sciureus. Cell bodies containing leu-enk or met-enk were found in the superior colliculus and the formatio reticularis tegmenti mesencephali, respectively. No immunoreactive cell bodies containing ACTH were observed. Leu-enk-immunoreactive fibers were observed in 40 brainstem nuclei/tracts/regions, fibers containing met-enk were found in 38 brainstem nuclei/tracts/regions and fibers containing ACTH were found in 26 nuclei/tracts/regions. In the latter case, the density of immunoreactive fibers was always low. A high/moderate density of leu-enk- or met-enk-immunoreactive fibers were found in 18 and 16 brainstem nuclei/tracts/regions, respectively. The distribution of immunoreactive fibers containing leu-enk or met-enk was quite similar, with both leu-enk and met-enk observed in 82.5 % of the squirrel monkey brainstem nuclei/tracts/regions. This relationship is less marked for met-enk and ACTH (60.5 %) and even lower for leu-enk and ACTH (52.5 %). In 42.5 % of the nuclei/tracts/regions of the squirrel monkey brainstem (colliculus superior, substantia grisea centralis, nucleus interpeduncularis, nucleus tractus spinalis nervi trigemini, nucleus tractus solitarii, nucleus parabrachialis, formatio reticularis, substantia nigra), we observed fibers containing all three neuropeptides. The widespread distribution reported here suggests that enkephalins and ACTH can be involved in several physiological functions. The distribution of the immunoreactive fibers reported here is quite similar to that previously reported for enkephalins and ACTH in Macaca species and humans.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Brain Stem/metabolism , Enkephalins/metabolism , Animals , Immunohistochemistry , Male , Saimiri
19.
Addict Biol ; 22(5): 1232-1245, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27212105

ABSTRACT

Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the µ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D4 R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D4 R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D4 R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D4 R/MOR interaction. In addition, D4 R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D4 R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.


Subject(s)
Analgesics, Opioid/pharmacology , Benzamides/pharmacology , Dopamine Agonists/pharmacology , Morphine/pharmacology , Neostriatum/drug effects , Piperazines/pharmacology , Receptors, Dopamine D4/agonists , Reward , Substantia Nigra/drug effects , Animals , Autoradiography , Caudate Nucleus/drug effects , Caudate Nucleus/metabolism , Drug Tolerance , Male , Neostriatum/metabolism , Pars Compacta/drug effects , Pars Compacta/metabolism , Pars Reticulata/drug effects , Pars Reticulata/metabolism , Putamen/drug effects , Putamen/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D4/metabolism , Receptors, Opioid, mu/metabolism , Substance-Related Disorders/metabolism , Substantia Nigra/metabolism
20.
Brain Struct Funct ; 221(9): 4491-4504, 2016 12.
Article in English | MEDLINE | ID: mdl-26792005

ABSTRACT

Galanin N-terminal fragment (1-15) [GAL(1-15)] is associated with depression-related and anxiogenic-like effects in rats. In this study, we analyzed the ability of GAL(1-15) to modulate 5-HT1A receptors (5-HT1AR), a key receptor in depression. GAL(1-15) enhanced the antidepressant effects induced by the 5-HT1AR agonist 8-OH-DPAT in the forced swimming test. These effects were stronger than the ones induced by Galanin (GAL). This action involved interactions at receptor level since GAL(1-15) affected the binding characteristics and the mRNA levels of 5-HT1AR in the dorsal hippocampus and dorsal raphe. The involvement of the GALR2 was demonstrated with the GALR2 antagonist M871. Proximity ligation assay experiments indicated that 5-HT1AR are in close proximity with GALR1 and GALR2 in both regions and in raphe RN33B cells. The current results indicate that GAL(1-15) enhances the antidepressant effects induced by 8-OH-DPAT acting on 5-HT1AR operating as postjunctional or as autoreceptors. These results may give the basis for the development of drugs targeting potential GALR1-GALR2-5-HT1AR heteroreceptor complexes linked to the raphe-hippocampal 5-HT neurons for the treatment of depression.


Subject(s)
8-Hydroxy-2-(di-n-propylamino)tetralin/administration & dosage , Antidepressive Agents/administration & dosage , Dorsal Raphe Nucleus/drug effects , Galanin/administration & dosage , Hippocampus/drug effects , Peptide Fragments/administration & dosage , Serotonergic Neurons/drug effects , Serotonin Receptor Agonists/administration & dosage , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Dorsal Raphe Nucleus/metabolism , Galanin/pharmacology , Hippocampus/metabolism , Male , Peptide Fragments/pharmacology , Peptides/administration & dosage , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Galanin, Type 1/metabolism , Receptor, Galanin, Type 2/antagonists & inhibitors , Receptor, Galanin, Type 2/metabolism , Serotonergic Neurons/metabolism , Serotonin Receptor Agonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...